webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

sulfo-SPDB-DM4

  CAS No.: 1626359-59-8   Cat No.: BADC-00018   Purity: ≥98% 4.5  

DM4 with a reactive linker sulfo-SPDB, which can react with antibody to make antibody drug conjugate. DM4 can bind to tubulin at or near the vinblastine-binding site.

sulfo-SPDB-DM4

Structure of 1626359-59-8

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin with Linker
Molecular Formula
C46H63ClN4O17S3
Molecular Weight
1075.66
Shipping
Room temperature, or blue ice upon request.
Shipping
Store in a cool and dry place (or refer to the Certificate of Analysis).

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Maytansinoid DM4- succinimidyl 4-(N-maleimidomethyl)cyclohexane-3-sulfo-carboxylate
IUPAC Name
4-[[5-[[(2S)-1-[[(1S,2R,3S,5S,6S,16Z,18Z,20R,21S)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl]oxy]-1-oxopropan-2-yl]-methylamino]-2-methyl-5-oxopentan-2-yl]disulfanyl]-1-(2,5-dioxopyrrolidin-1-yl)oxy-1-oxobutane-2-sulfonic acid
Canonical SMILES
CC1C2CC(C(C=CC=C(CC3=CC(=C(C(=C3)OC)Cl)N(C(=O)CC(C4(C1O4)C)OC(=O)C(C)N(C)C(=O)CCC(C)(C)SSCCC(C(=O)ON5C(=O)CCC5=O)S(=O)(=O)O)C)C)OC)(NC(=O)O2)O
InChI
1S/C46H63ClN4O17S3/c1-25-12-11-13-33(64-10)46(59)24-31(65-43(58)48-46)26(2)40-45(6,67-40)34(23-38(55)50(8)29-21-28(20-25)22-30(63-9)39(29)47)66-41(56)27(3)49(7)35(52)16-18-44(4,5)70-69-19-17-32(71(60,61)62)42(57)68-51-36(53)14-15-37(51)54/h11-13,21-22,26-27,31-34,40,59H,14-20,23-24H2,1-10H3,(H,48,58)(H,60,61,62)/b13-11+,25-12+/t26-,27+,31+,32?,33-,34+,40+,45+,46+/m1/s1
InChIKey
ACJLJPQSHWOFQD-SKUWBIDSSA-N
Density
1.44±0.1 g/cm3
Solubility
DMSO
Appearance
Soild powder
Shipping
Room temperature, or blue ice upon request.
Storage
Store in a cool and dry place (or refer to the Certificate of Analysis).
1.Effects of Drug-Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody-Maytansinoid Conjugates.
Sun X;Ponte JF;Yoder NC;Laleau R;Coccia J;Lanieri L;Qiu Q;Wu R;Hong E;Bogalhas M;Wang L;Dong L;Setiady Y;Maloney EK;Ab O;Zhang X;Pinkas J;Keating TA;Chari R;Erickson HK;Lambert JM Bioconjug Chem. 2017 May 17;28(5):1371-1381. doi: 10.1021/acs.bioconjchem.7b00062. Epub 2017 Apr 13.
Antibody-drug conjugates (ADCs) are being actively pursued as a treatment option for cancer following the regulatory approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla). ADCs consist of a cytotoxic agent conjugated to a targeting antibody through a linker. The two approved ADCs (and most ADCs now in the clinic that use a microtubule disrupting agent as the payload) are heterogeneous conjugates with an average drug-to-antibody ratio (DAR) of 3-4 (potentially ranging from 0 to 8 for individual species). Ado-trastuzumab emtansine employs DM1, a semisynthetic cytotoxic payload of the maytansinoid class, which is conjugated via lysine residues of the antibody to an average DAR of 3.5. To understand the effect of DAR on the preclinical properties of ADCs using maytansinoid cytotoxic agents, we prepared a series of conjugates with a cleavable linker (M9346A-sulfo-SPDB-DM4 targeting folate receptor α (FRα)) or an uncleavable linker (J2898A-SMCC-DM1 targeting the epidermal growth factor receptor (EGFR)) with varying DAR and evaluated their biochemical characteristics, in vivo stability, efficacy, and tolerability. For both formats, a series of ADCs with DARs ranging from low (average of ∼2 and range of 0-4) to very high (average of 10 and range of 7-14) were prepared in good yield with high monomer content and low levels of free cytotoxic agent.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload ADC Linker–Payload Conjugation ADC Linker Development Chemical Payload Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Linkers - A Crucial Factor in Antibody–Drug Conjugates Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: Lorvotuzumab mertansine | Polatuzumab vedotin | PC SPDP-NHS carbonate ester | Disitamab vedotin | Fmoc-Val-Ala-PAB-PNP | 1-(4-((3-(dimethylcarbamoyl)pyridin-4-yl)disulfanyl)pentanoyloxy)-2,5-dioxopyrrolidine-3-sulfonic acid | MC-Alkyl-Hydrazine Modified MMAF | Cys-MC-MMAF | Indatuximab ravtansine | PEG4-aminooxy-MMAF | sulfo-SPDB-DM4
Send Inquiry
Verification code
Inquiry Basket