webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

NADH-ubiquinone Oxidoreductases (Complex I)

BOC Sciences provides various toxins used as payloads for antibodies conjugation to form ADCs. NADH-ubiquinone oxidoreductase, also called complex I, is the largest multiprotein complex of the mitochondrial respiratory chain. It couples electron transfer between NADH and ubiquinone to proton transport across the bacterial cytoplasmic membrane and the mitochondrial inner membrane. As the first enzyme of the mitochondrial electron transport chain, complex I catalyzed beta-NADH oxidation by ubiquinone and coupled to transmembrane proton translocation. Moreover, complex I contains a flavin mononucleotide (FMN) at the active site for NADH oxidation, with up to eight iron-sulfur (FeS) clusters and at least one ubiquinone binding site. This complex is composed of three specialized modules: (i) a hydrophilic NADH oxidation module, which constitutes the import mechanism; (ii) a hydrophobic module that anchors the enzyme in the membrane and is required for proton transport; (iii) a connector that connects the other two modules.

Why BOC Sciences

Comprehensive one-stop antibody-drug conjugate service platform

Large Stock

More than 1000+ high-purity products in inventory

Large Stock

Global Delivery

Warehouses in multiple cities to ensure fast delivery

Large Stock

mg to kg

Qualified facilities & equipment of cGMP laboratory

mg to kg

24/7 Technical Support

Strict process parameter control to ensure product quality

Large Stock

More information About NADH-ubiquinone Oxidoreductases (Complex I)

NADH-ubiquinone Oxidoreductases (Complex I) Characteristics

NADH-ubiquinone oxidoreductase (complex I) conserves energy from NADH oxidation, coupled to ubiquinone reduction as a proton motive force across the inner membrane. It catalyzes NADPH oxidation, NAD+ reduction, and hydride transfers from reduced to oxidized nicotinamide nucleotides. Complex I coupled with oxidoreduction reaction to actively transport four protons across the mitochondrial inner membrane. This enzyme is present in the inner membrane of eukaryotic mitochondria and the plasma membrane of bacteria, such as rhodobacter capsulatus. Whereas the mitochondrial enzyme contains up to 43 different subunits, the bacterial enzyme comprises only 13-14 subunits and can be considered the minimal core Complex I paradigm. Among the different cofactors of Complex I, ubiquinone plays a significant role: (i) as a substrate, it is the final acceptor of electrons from NADH-oxidation; (ii) as a tightly bound cofactor, quinone has been proposed to participate in electron recycling and/or proton transport processes carried out by Complex I.

Structure of NADH-ubiquinone Oxidoreductases (Complex I)Fig. 1. Structure of NADH-ubiquinone Oxidoreductases (Complex I).

NADH-ubiquinone Oxidoreductases (Complex I) Inhibitor

Ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. Various inhibitors targeting complex I, such as Rotenone, Piericidin A, and Pyridaben, are considered to bind at or close to the quinone binding site(s). As quinones and complex I inhibitors share a hydrophobic nature, the binding site for these species has long been considered to be buried in the membrane domain.

References

  1. Hirst, J.; et al. Transhydrogenation Reactions Catalyzed by Mitochondrial NADH-Ubiquinone Oxidoreductase (Complex I). Biochemistry, 2007, 46(49): 14250-14258.
  2. Zickermann, V.; et al. Respiratory complex I-structure, mechanism and evolution. Current Opinion in Structural Biology, 2020, 63: 1-9.
* Only for research. Not suitable for any diagnostic or therapeutic use.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Purity Guaranteed

≥95%
Purity Guaranteed

Countries/Regions Delivered

20+
Countries/Regions Delivered

Technical Support

24/7
Technical Support

Products In Stock

1,000+
Products In Stock

High-Quality Service

100%
High-Quality Service
Send Inquiry
Verification code
Inquiry Basket