webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

4-Formyl-N-(2-Isopropoxyethyl)benzamide

  CAS No.: 1061567-05-2   Cat No.: BADC-00517 4.5  

4-Formyl-N-(2-Isopropoxyethyl)benzamide is an aldehyde-functionalized ADC linker facilitating site-specific antibody conjugation, optimizing targeted drug delivery in antibody-drug conjugates.

4-Formyl-N-(2-Isopropoxyethyl)benzamide

Structure of 1061567-05-2

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C13H17NO3
Molecular Weight
235.28
Shipping
-20°C (International: -20°C)

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
4-Formyl-N-(2-isopropoxyethyl)benzamide
IUPAC Name
4-formyl-N-(2-propan-2-yloxyethyl)benzamide
Canonical SMILES
CC(C)OCCNC(=O)C1=CC=C(C=C1)C=O
InChI
InChI=1S/C13H17NO3/c1-10(2)17-8-7-14-13(16)12-5-3-11(9-15)4-6-12/h3-6,9-10H,7-8H2,1-2H3,(H,14,16)
InChIKey
NBIHWEMAJNWGIL-UHFFFAOYSA-N
Shipping
-20°C (International: -20°C)

4-Formyl-N-(2-Isopropoxyethyl)benzamide is an important compound in the synthesis of organic molecules, particularly in the pharmaceutical industry. Its unique benzamide structure with the formyl and isopropoxyethyl functional groups makes it a versatile building block for designing various bioactive molecules. One of its primary applications is in the development of anti-inflammatory drugs. The compound’s structural characteristics allow it to interact effectively with certain biological targets, potentially inhibiting the pathways responsible for inflammation. This makes it a valuable component in the formulation of new medications aimed at treating conditions such as arthritis and other inflammatory disorders.

Another significant application of 4-Formyl-N-(2-Isopropoxyethyl)benzamide is in the field of cancer research. Its ability to modify and act as a precursor in synthesizing complex molecules enables researchers to explore new cancer treatment options. Specifically, the compound’s formyl group can engage in various chemical reactions that produce derivatives with potent anti-cancer properties. Research studies have demonstrated that certain derivatives of this benzamide can induce apoptosis in cancer cells, thus offering a potential pathway for developing novel chemotherapeutic agents. By leveraging the compound’s synthesis potential, scientists can create new drugs that may be more effective and have fewer side effects than existing treatments.

4-Formyl-N-(2-Isopropoxyethyl)benzamide is also used in the production of antimicrobial agents. The increasing resistance of microorganisms to existing antibiotics necessitates the continuous search for new compounds with potent antibacterial and antifungal properties. The structural framework of this benzamide allows for modifications that can enhance its activity against a wide range of pathogens. By optimizing the structure, scientists can develop more effective antimicrobial agents that can combat bacteria and fungi that have become resistant to other medications. This application is critical in maintaining public health and addressing the growing challenge of antibiotic resistance.

Lastly, 4-Formyl-N-(2-Isopropoxyethyl)benzamide finds application in the development of neurological drugs. The compound can be tailored to produce molecules that interact with specific neural pathways, offering potential treatments for neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Its ability to cross the blood-brain barrier and interact with neural tissues makes it particularly useful in this regard. By synthesizing derivatives that can modulate neural activity, researchers hope to create drugs that can alleviate or slow the progression of these debilitating conditions. This makes the compound a key player in advancing neurological therapeutic options.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: (((S)-1-(((4-((S)-2-((S)-2-(6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanamido)-3-methylbutanamido)propanamido)benzyl)oxy)carbonyl)pyrrolidin-2-yl)methyl)(2-(methylsulfonyl)ethyl)carbamic acid | Dov-Val-Dil-OH hydrochloride | Fmoc-Phe-Lys(Boc)-PAB-PNP | D8-MMAF | Fmoc-Val-Ala-OH | endo-BCN-PEG4-PFP ester | AcLys-PABC-VC-Aur0101 | N-(2-azidoacetyl)glycylglycine | MA-PEG4-VC-PAB-DMAE-Doxorubicin | 4-Formyl-N-(2-Isopropoxyethyl)benzamide
Send Inquiry
Verification code
Inquiry Basket