webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

4-Formyl-N-(2-(mesityloxy)ethyl)benzamide

  CAS No.: 1226076-32-9   Cat No.: BADC-00550 4.5  

4-Formyl-N-(2-(mesityloxy)ethyl)benzamide is an aldehyde ADC linker with bulky mesityloxy groups, enhancing selective antibody conjugation and stability in ADC drug conjugation.

4-Formyl-N-(2-(mesityloxy)ethyl)benzamide

Structure of 1226076-32-9

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C19H21NO3
Molecular Weight
311.37
Shipping
Room temperature, or blue ice upon request.

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
IUPAC Name
4-formyl-N-[2-(2,4,6-trimethylphenoxy)ethyl]benzamide
Canonical SMILES
CC1=CC(=C(C(=C1)C)OCCNC(=O)C2=CC=C(C=C2)C=O)C
InChI
InChI=1S/C19H21NO3/c1-13-10-14(2)18(15(3)11-13)23-9-8-20-19(22)17-6-4-16(12-21)5-7-17/h4-7,10-12H,8-9H2,1-3H3,(H,20,22)
InChIKey
VGAMSQRFHJDQAR-UHFFFAOYSA-N
Shipping
Room temperature, or blue ice upon request.

4-Formyl-N-(2-(mesityloxy)ethyl)benzamide is a prominent compound in the realm of pharmaceutical research, owing to its diverse potential applications in drug development. Firstly, its structural framework, which includes a formyl group and mesityloxy substituent, makes it an interesting candidate for the synthesis of novel bioactive molecules. The formyl group is a well-known reactive moiety that can participate in various chemical reactions, such as nucleophilic additions and condensations, allowing for the derivation of complex molecular structures. The mesityloxy group introduces steric bulk and specific electronic effects that can be exploited for tuning the biological activity of the resultant compounds. By modifying its core structure, researchers can develop new drugs with improved efficacy, selectivity, and reduced side effects, thus addressing unmet medical needs in areas like cancer, infectious diseases, and neurological disorders.

Another significant application of 4-Formyl-N-(2-(mesityloxy)ethyl)benzamide is in the field of materials science, particularly in the development of advanced organic materials. The compound can act as a building block for the synthesis of polymers and oligomers with tailor-made properties. For instance, the benzamide functionality can engage in hydrogen bonding and dipole-dipole interactions, which are crucial for the self-assembly processes in supramolecular chemistry. These interactions can be harnessed to create materials with specific mechanical, optical, or electronic properties. Consequently, such materials find applications in organic electronics, where they can be used to fabricate components like organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). The precise arrangement of functional groups in 4-Formyl-N-(2-(mesityloxy)ethyl)benzamide enables the fine-tuning of these interactions, leading to materials with enhanced performance and stability.

The third application lies in the realm of chemical biology, where 4-Formyl-N-(2-(mesityloxy)ethyl)benzamide serves as a versatile chemical probe. As a chemical probe, it can be used to study and modulate biological processes at the molecular level. Its formyl group can readily form Schiff bases with primary amines, a reaction that is often exploited to label proteins, peptides, and other biomolecules. This labeling can facilitate the tracking of these molecules within complex biological systems, thereby elucidating their functions and interactions. Additionally, due to its ability to engage in specific interactions with biomolecular targets, it can be employed to inhibit or activate particular proteins or signaling pathways. These studies are crucial for understanding disease mechanisms and identifying new therapeutic targets, thus accelerating the discovery of innovative treatments for various health conditions.

Lastly, 4-Formyl-N-(2-(mesityloxy)ethyl)benzamide finds application in the realm of environmental science, particularly in the detection and removal of pollutants. Due to its ability to form complexes with various metal ions, it can be used as a chelating agent in environmental remediation processes. For example, it can bind to heavy metals like lead, mercury, and cadmium, which are common environmental contaminants. The resultant complexes can then be removed from wastewater through precipitation or other separation techniques. Moreover, the compound’s unique structure can be functionalized to develop sensitive and selective sensors for detecting low concentrations of various pollutants, including toxins and hazardous chemicals. These sensors can be deployed in environmental monitoring systems to ensure the safety and quality of air and water, thus protecting ecosystems and public health.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: 2,5-Dioxopyrrolidin-1-yl 3-Hydroxypropanoate | OSu-Glu-vc-PAB-MMAE | DBCO-PEG3 acetic-EVCit-PAB | Propargyl-PEG4-NHS ester | THP-SS-alcohol | Bis-PEG4-NHS ester | BCN-PEG4-NHS ester | 4-Formyl-N-(2-(3-isopropylphenoxy)ethyl)benzamide | N-Hydroxysuccinimidyl-4-azidobenzoate | Mc-Leu-Gly-Arg | 4-Formyl-N-(2-(mesityloxy)ethyl)benzamide
Send Inquiry
Verification code
Inquiry Basket