webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

2,5-dioxopyrrolidin-1-yl 15-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-13-oxo-3,6,9-trioxa-12-azapentadecan-1-oate

  CAS No.:   Cat No.: BADC-00446   Purity: ≥98% 4.5  

2,5-dioxopyrrolidin-1-yl 15-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-13-oxo-3,6,9-trioxa-12-azapentadecan-1-oate is a biochemical product utilized for the drug development of various diseases. It plays a crucial role in targeting specific drugs to combat infections caused by pathogens such as bacteria and viruses.

2,5-dioxopyrrolidin-1-yl 15-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-13-oxo-3,6,9-trioxa-12-azapentadecan-1-oate

Structure of

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C19H25N3O10
Molecular Weight
455.42

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Mal-PEG-NHS;
Appearance
Soild powder

2,5-Dioxopyrrolidin-1-yl 15-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-13-oxo-3,6,9-trioxa-12-azapentadecan-1-oate is a specialized chemical reagent often used in biochemical and molecular biology applications. Here are some key applications of this compound:

Protein Labeling: This molecule can be used for protein labeling by forming stable covalent bonds with amino groups. This allows researchers to attach various probes or tags to proteins, enabling the study of protein localization, interaction, and function. Labeling proteins with fluorescent tags, for example, enhances the visualization in microscopy and flow cytometry.

Peptide Synthesis: The compound is useful in solid-phase peptide synthesis, where it acts as a coupling reagent. It assists in forming peptide bonds between amino acids, facilitating the synthesis of complex peptide chains. This is particularly valuable for producing peptides for research, pharmaceutical development, and therapeutic applications.

Drug Development: In the field of drug development, the molecule can be employed to modify drug candidates to improve their solubility, stability, or bioavailability. By attaching this reagent to small molecules or peptides, the pharmacokinetic properties of therapeutic agents can be optimized. This leads to the creation of more effective and safer pharmaceuticals.

Bioconjugation: The compound is instrumental in bioconjugation techniques, where it is used to attach biomolecules to various surfaces or other biomolecules. It can link enzymes to substrates, antibodies to surfaces, or drugs to targeting moieties, among others. This application is essential for developing diagnostic assays, biosensors, and targeted drug delivery systems.

1. New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl)propan-2-yl]pyrrolidine-2,5-diones
Anna Rapacz, Michał Abram, Krzysztof Kamiński, Mirosław Zagaja, Jarogniew J Łuszczki, Marta Andres-Mach, Jolanta Obniska Bioorg Med Chem . 2016 Feb 15;24(4):606-18. doi: 10.1016/j.bmc.2015.12.027.
The purpose of this study was to synthetize the focused library of 34 new piperazinamides of 3-methyl- and 3,3-dimethyl-(2,5-dioxopyrrolidin-1-yl)propanoic or butanoic acids as potential new hybrid anticonvulsants. These hybrid molecules join the chemical fragments of well-known antiepileptic drugs (AEDs) such as ethosuximide, levetiracetam, and lacosamide. Compounds 5-38 were prepared in a coupling reaction of the 3-methyl- or 3,3-dimethyl-2-(2,5-dioxopyrrolidin-1-yl)propanoic (1, 2) or butanoic acids (3, 4) with the appropriately substituted secondary amines in the presence of the N,N-carbonyldiimidazole reagent. The initial anticonvulsant screening was performed in mice (ip) using the 'classical' maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests as well as in the six-Hertz (6Hz) model of pharmacoresistant limbic seizures. The acute neurological toxicity was determined applying the chimney test. The broad spectra of activity across the preclinical seizure models in mice ip displayed compounds 7, 15, and 36. The most favorable anticonvulsant properties demonstrated 15 (ED50 MES=74.8mg/kg, ED50scPTZ=51.6mg/kg, ED50 6Hz=16.8mg/kg) which showed TD50=213.3mg/kg in the chimney test that yielded satisfying protective indexes (PI MES=2.85, PI scPTZ=4.13, PI 6Hz=12.70) at time point of 0.5h. As a result, compound 15 displayed comparable or better safety profile than clinically relevant AEDs: ethosuximide, lacosamide or valproic acid. In the in vitro assays compound 15 was observed as relatively effective binder to the neuronal voltage-sensitive sodium and L-type calcium channels. Beyond the anticonvulsant properties, 6 compounds diminished the pain responses in the formalin model of tonic pain in mice.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: MC-Gly-Gly-Phe | Boc-Ser(O-propargyl)-OH | m-PEG2-NHS ester | MC-Gly-Gly-Phe-Boc | MC-Gly-Gly-Phe-Gly | TCO-GK-PEG4-NHS ester | Fmoc-Val-Ala-PAB-PFP | MMAD | SPDMB | 2,5-dioxopyrrolidin-1-yl 15-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-13-oxo-3,6,9-trioxa-12-azapentadecan-1-oate
Send Inquiry
Verification code
Inquiry Basket