webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Ungerine Nitrate

  CAS No.:   Cat No.: BADC-00081   Purity: 97 % (TLC). 4.5  

Ungerine Nitrate is a potent ADC payload that induces DNA damage and cell cycle arrest. As an ADC cytotoxin, it improves therapeutic efficacy in targeted antibody-drug conjugate cancer treatments.

Ungerine Nitrate

Structure of

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin
Molecular Formula
C18H20N2O8
Molecular Weight
392.36
Shipping
Room temperature, or blue ice upon request.
Shipping
Store at +4 °C, in dark place.

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
IUPAC Name
(3R,9R)-9-methoxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one;nitric acid
Canonical SMILES
CN1CCC2=CC(C3C(C21)C4=CC5=C(C=C4C(=O)O3)OCO5)OC.[N+](=O)(O)[O-]
InChI
InChI=1S/C18H19NO5.HNO3/c1-19-4-3-9-5-14(21-2)17-15(16(9)19)10-6-12-13(23-8-22-12)7-11(10)18(20)24-17;2-1(3)4/h5-7,14-17H,3-4,8H2,1-2H3;(H,2,3,4)/t14-,15?,16+,17?;/m1./s1
InChIKey
PSCZYIVKEHPWIP-VYRMFUMRSA-N
Solubility
Well in water
Melting Point
260 °C.
Appearance
Solid powder
Shipping
Room temperature, or blue ice upon request.
Storage
Store at +4 °C, in dark place.
1. Predicting nitrate leaching under potato crops using transfer functions
M O Gasser, R Lagacé, J Caron, M R Laverdière J Environ Qual . 2003 Jul-Aug;32(4):1464-73. doi: 10.2134/jeq2003.1464.
Nitrate leaching is a major issue in many cultivated soils. Models that predict the major processes involved at the field scale could be used to test and improve management practices. This study aims to evaluate a simple transfer function approach to predict nitrate leaching in sandy soils. A convective lognormal transfer (CLT) function is convoluted with functional equations simulating N mineralization, plant N uptake, N fertilizer dissolution, and nitrification at the soil surface to predict solute concentrations under potato (Solanum tuberosum L.) and barley (Hordeum vulgare L.) fields as a function of drainage water. Using this approach, nitrate flux concentrations measured in drainable lysimeters (1-m soil depth) were reasonably predicted from 29 Apr. 1996 to 3 Dec. 1996. With average application rates of 16.9 g m(-2) of N fertilizer in potato crops, mean nitrate-leaching losses measured under potato were 8.5 g N m(-2). Tuber N uptake averaged 9.7 g N m(-2) and soil mineral N at start (spring) and end (fall) of N mass balance averaged 1.7 and 4.5 g N m(-2), respectively. Soil N mineralization was estimated by difference (4.3 g N m(-2) on average) and was small compared with N fertilization. Small nitrate flux concentrations at the beginning of the cropping season (May) resulted mainly from initial soil nitrate concentrations. Measured and predicted nitrate flux concentrations significantly increased at mid-season (July-August) following important drainage events coupled with complete dissolution and nitrification of N fertilizers, and declining N uptake by potato plants. Decreases in nitrate concentrations before the end of year (November-December) underlined the predominant effect of N fertilizers applied for the most part at planting acting as a pulse input of solute.
2. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy
Alessandro Alboresi, Theodoros Matakiadis, Olivier Pichon, Jean-Pierre Renou, Eiji Nambara, Kiyoshi Tatematsu, Yuji Kamiya, Hoai-Nam Truong, Yusuke Jikumaru Plant Physiol . 2009 Feb;149(2):949-60. doi: 10.1104/pp.108.126938.
Nitrate releases seed dormancy in Arabidopsis (Arabidopsis thaliana) Columbia accession seeds in part by reducing abscisic acid (ABA) levels. Nitrate led to lower levels of ABA in imbibed seeds when included in the germination medium (exogenous nitrate). Nitrate also reduced ABA levels in dry seeds when provided to the mother plant during seed development (endogenous nitrate). Transcript profiling of imbibed seeds treated with or without nitrate revealed that exogenous nitrate led to a higher expression of nitrate-responsive genes, whereas endogenous nitrate led to a profile similar to that of stratified or after-ripened seeds. Profiling experiments indicated that the expression of the ABA catabolic gene CYP707A2 was regulated by exogenous nitrate. The cyp707a2-1 mutant failed to reduce seed ABA levels in response to both endogenous and exogenous nitrate. In contrast, both endogenous and exogenous nitrate reduced ABA levels of the wild-type and cyp707a1-1 mutant seeds. The CYP707A2 mRNA levels in developing siliques were positively correlated with different nitrate doses applied to the mother plants. This was consistent with a role of the CYP707A2 gene in controlling seed ABA levels in response to endogenous nitrate. The cyp707a2-1 mutant was less sensitive to exogenous nitrate for breaking seed dormancy. Altogether, our data underline the central role of the CYP707A2 gene in the nitrate-mediated control of ABA levels during seed development and germination.
3. Plant hormone transporters: what we know and what we would like to know
Youngsook Lee, Enrico Martinoia, Markus Geisler, Jiyoung Park BMC Biol . 2017 Oct 25;15(1):93. doi: 10.1186/s12915-017-0443-x.
Hormone transporters are crucial for plant hormone action, which is underlined by severe developmental and physiological impacts caused by their loss-of-function mutations. Here, we summarize recent knowledge on the individual roles of plant hormone transporters in local and long-distance transport. Our inventory reveals that many hormones are transported by members of distinct transporter classes, with an apparent dominance of the ATP-binding cassette (ABC) family and of the Nitrate transport1/Peptide transporter family (NPF). The current need to explore further hormone transporter regulation, their functional interaction, transport directionalities, and substrate specificities is briefly reviewed.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload Chemical Payload Protein Toxin Nanocarrier Microtubule Inhibitors DNA Damaging Agents RNA Polymerase Inhibitors Protein Degraders

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research ADC Payloads Explained: Current Types and Cutting-Edge Research Progress Tubulin Inhibitors - Highly Potential ADC Payloads

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: N3-L-Cys(Trt)-OH CHA | N3-L-Leu-OH | N3-L-Lys(Mtt)-OH | N3-L-Orn(Fmoc)-OH | N3-L-Dab(Fmoc)-OH | N3-L-Cit-OH | Cryptophycin 1 | Telomestatin | Paclitaxel D5 | Seco-Duocarmycin MB | Ungerine Nitrate
Send Inquiry
Verification code
Inquiry Basket