webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Pyrrolobenzodiazepine (PBD)

  CAS No.: 945490-09-5   Cat No.: BADC-01377   Purity: > 95% 4.5  

Pyrrolobenzodiazepines are a class of natural products with antibiotic or anti-tumor properties. They are produced by various actinomycetes. As a class of DNA-crosslinking agents, pyrrolobenzodiazepines are significantly more potent than systemic chemotherapeutic drugs.

Pyrrolobenzodiazepine (PBD)

Structure of 945490-09-5

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin
Molecular Formula
C14H14N2O3
Molecular Weight
258.28
Shipping
store at -20°C, stored under nitrogen

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Tomaymycin DM; SCHEMBL1744508; 945490-09-5; MS-23640; HY-102001; CS-0022442
IUPAC Name
(6aS)-3-hydroxy-2-methoxy-8-methylidene-7,9-dihydro-6aH-pyrrolo[2,1-c][1,4]benzodiazepin-11-one
Canonical SMILES
COC1=C(C=C2C(=C1)C(=O)N3CC(=C)CC3C=N2)O
InChI
InChI=1S/C14H14N2O3/c1-8-3-9-6-15-11-5-12(17)13(19-2)4-10(11)14(18)16(9)7-8/h4-6,9,17H,1,3,7H2,2H3/t9-/m0/s1
InChIKey
GXKVYHPROGIVCL-VIFPVBQESA-N
Appearance
Solid
Quantity
Milligrams-Grams
Storage
store at -20°C, stored under nitrogen
1. Antistaphylococcal activity of DNA-interactive pyrrolobenzodiazepine (PBD) dimers and PBD-biaryl conjugates
Peter W Taylor, David E Thurston, Joao B Moreira, Keith R Fox, Denise E Waldron, Philip W Howard, Helena Rosado, Stephen J Gregson, Maria de la Fuente, Eva Stecher, Eva-Anne Feuerbaum, Khondaker M Rahman, Colin H James J Antimicrob Chemother . 2012 Jul;67(7):1683-96. doi: 10.1093/jac/dks127.
Objectives:Pyrrolobenzodiazepine (PBD) dimers, tethered through inert propyldioxy or pentyldioxy linkers, possess potent bactericidal activity against a range of Gram-positive bacteria by virtue of their capacity to cross-link duplex DNA in sequence-selective fashion. Here we attempt to improve the antibacterial activity and cytotoxicity profile of PBD-containing conjugates by extension of dimer linkers and replacement of one PBD unit with phenyl-substituted or benzo-fused heterocycles that facilitate non-covalent interactions with duplex DNA.Methods:DNase I footprinting was used to identify high-affinity DNA binding sites. A staphylococcal gene microarray was used to assess epidemic methicillin-resistant Staphylococcus aureus 16 phenotypes induced by PBD conjugates. Molecular dynamics simulations were employed to investigate the accommodation of compounds within the DNA helix.Results:Increasing the length of the linker in PBD dimers led to a progressive reduction in antibacterial activity, but not in their cytotoxic capacity. Complex patterns of DNA binding were noted for extended PBD dimers. Modelling of DNA strand cross-linking by PBD dimers indicated distortion of the helix. A majority (26 of 43) of PBD-biaryl conjugates possessed potent antibacterial activity with little or no helical distortion and a more favourable cytotoxicity profile. Bactericidal activity of PBD-biaryl conjugates was determined by inability to excise covalently bound drug molecules from bacterial duplex DNA.Conclusions:PBD-biaryl conjugates have a superior antibacterial profile compared with PBD dimers such as ELB-21. We have identified six PBD-biaryl conjugates as potential drug development candidates.
2. ADCT-402, a PBD dimer-containing antibody drug conjugate targeting CD19-expressing malignancies
Peter C Tyrer, Simon Chivers, Konstantinos Kiakos, Teresa Marafioti, Charles E Britten, Francois D'Hooge, David G Williams, Arnaud Tiberghien, John A Hartley, Francesca Zammarchi, Philip W Howard, Simon Corbett, Narinder Janghra, Carin E G Havenith, Patrick H van Berkel, Lauren Adams Blood . 2018 Mar 8;131(10):1094-1105. doi: 10.1182/blood-2017-10-813493.
Human CD19 antigen is a 95-kDa type I membrane glycoprotein in the immunoglobulin superfamily whose expression is limited to the various stages of B-cell development and differentiation and is maintained in the majority of B-cell malignancies, including leukemias and non-Hodgkin lymphomas of B-cell origin. Coupled with its differential and favorable expression profile, CD19 has rapid internalization kinetics and is not shed into the circulation, making it an ideal target for the development of antibody-drug conjugates (ADCs) to treat B-cell malignancies. ADCT-402 (loncastuximab tesirine) is a novel CD19-targeted ADC delivering SG3199, a highly cytotoxic DNA minor groove interstrand crosslinking pyrrolobenzodiazepine (PDB) dimer warhead. It showed potent and highly targeted in vitro cytotoxicity in CD19-expressing human cell lines. ADCT-402 was specifically bound, internalized, and trafficked to lysosomes in CD19-expressing cells and, following release of the PBD warhead, resulted in formation of DNA crosslinks that persisted for 36 hours. Bystander killing of CD19-cells by ADCT-402 was also observed. In vivo, single doses of ADCT-402 resulted in highly potent, dose-dependent antitumor activity in several subcutaneous and disseminated human tumor models with marked superiority to comparator ADCs delivering tubulin inhibitors. Dose-dependent DNA crosslinks and γ-H2AX DNA damage response were measured in tumors by 24 hours after single dose administration, whereas matched peripheral blood mononuclear cells showed no evidence of DNA damage. Pharmacokinetic analysis in rat and cynomolgus monkey showed excellent stability and tolerability of ADCT-402 in vivo. Together, these impressive data were used to support the clinical testing of this novel ADC in patients with CD19-expressing B-cell malignancies.
3. BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression
Lijie Xing, Liang Lin, Krista Kinneer, Nikhil Munshi, Kenneth Wen, Shih-Feng Cho, Jiye Liu, Gang An, Kenneth C Anderson, Phillip A Hsieh, Lugui Qiu, Su Wang, Tengteng Yu, Yuyin Li, Yu-Tzu Tai, Hailin Chen Clin Cancer Res . 2021 Oct 1;27(19):5376-5388. doi: 10.1158/1078-0432.CCR-21-1621.
Purpose:Efforts are required to improve the potency and durability of CD38- and BCMA-based immunotherapies in human multiple myeloma. We here delineated the molecular and cellular mechanisms underlying novel immunomodulatory effects triggered by BCMA pyrrolobenzodiazepine (PBD) antibody drug conjugate (ADC) MEDI2228 which can augment efficacy of these immunotherapies.Experimental design:MEDI2228-induced transcriptional and protein changes were investigated to define significantly impacted genes and signaling cascades in multiple myeloma cells. Mechanisms whereby MEDI2228 combination therapies can enhance cytotoxicity or overcome drug resistance in multiple myeloma cell lines and patient multiple myeloma cells were defined using in vitro models of tumor in the bone marrow (BM) microenvironment, as well as in human natural killer (NK)-reconstituted NOD/SCID gamma (NSG) mice bearing MM1S tumors.Results:MEDI2228 enriched IFN I signaling and enhanced expression of IFN-stimulated genes in multiple myeloma cell lines following the induction of DNA damage-ATM/ATR-CHK1/2 pathways. It activated cGAS-STING-TBK1-IRF3 and STAT1-IRF1-signaling cascades and increased CD38 expression in multiple myeloma cells but did not increase CD38 expression in BCMA-negative NK effector cells. It overcame CD38 downregulation on multiple myeloma cells triggered by IL6 and patient BM stromal cell-culture supernatant via activation of STAT1-IRF1, even in immunomodulatory drug (IMiD)- and bortezomib-resistant multiple myeloma cells. In vitro and in vivo upregulation of NKG2D ligands and CD38 in MEDI2228-treated multiple myeloma cells was further associated with synergistic daratumumab (Dara) CD38 MoAb-triggered NK-mediated cytotoxicity of both cell lines and autologous drug-resistant patient multiple myeloma cells.Conclusions:These results provide the basis for clinical evaluation of combination MEDI2228 with Dara to further improve patient outcome in multiple myeloma.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload Chemical Payload Protein Toxin Nanocarrier Microtubule Inhibitors DNA Damaging Agents RNA Polymerase Inhibitors Protein Degraders

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research ADC Payloads Explained: Current Types and Cutting-Edge Research Progress Tubulin Inhibitors - Highly Potential ADC Payloads

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: DM4-SPDP | Ald-PEG4-NHS ester | Azide-PEG4-VC-PAB-Doxorubicin | NHPI-PEG2-C2-NHS ester | DBCO-PEG4-Val-Cit-PAB-MMAF | Fmoc-N-amido-PEG2-acetic acid | N-(2-(3-Ethoxyphenoxy)ethyl)-4-Formylbenzamide | N-(2-(2-Fluorophenoxy)ethyl)-4-Formylbenzamide | Py-MPB-amino-C3-PBD | MAC glucuronide linker-2 | Pyrrolobenzodiazepine (PBD)
Send Inquiry
Verification code
Inquiry Basket