1. Characterization and regulation of the expression of scyllatoxin (Leiurotoxin I) receptors in the human neuroblastoma cell line NB-OK 1
M Tastenoy, M Waelbroeck, J Christophe, P De Neef, J C Gesquière, D Gossen FEBS Lett . 1991 Jul 22;285(2):271-4. doi: 10.1016/0014-5793(91)80815-k.
125I-[Tyr2]scyllatoxin allowed to label a single class of high-affinity receptors in membranes from the human neuroblastoma cell line NB-OK 1. The Kd of these receptors was 60 pM for scyllatoxin (Leiurotoxin I) and 20 pM for apamin and the Bmax was low (3.8 fmol/mg membrane protein). K+ increased toxin binding at low concentrations but exerted opposite effects at high concentrations. Ca2+, guanidinium and Na+ exerted only inhibitory effects on binding. Scyllatoxin binding sites were overexpressed 2.5-fold after a 24-h cell pretreatment with 2 mM butyrate. This effect was suppressed by cycloheximide.
2. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabeling, and receptor characterization
A Tartar, P Auguste, M Lazdunski, M Hugues, J C Gesquière, P Maes, G Romey, B Gravé, H Schweitz J Biol Chem . 1990 Mar 15;265(8):4753-9.
Leiurotoxin I (scyllatoxin) is a 31-amino acid polypeptide from the venom of the scorpion Leiurus quinquestriatus hebraeus which has been previously isolated and sequenced by others. This paper reports (i) the total synthesis of this scorpion neurotoxin as well as some aspects of its structure-function relationships; (ii) the synthesis of the analog [Tyr2]leiurotoxin I (scyllatoxin) that has been monoiodinated at high specific radioactivity (2000 Ci/mmol) and has served for the characterization of the properties of 125I-[Tyr2]leiurotoxin I binding sites (Kd = 80 pM, molecular mass of 27 and 57 kDa for two polypeptides in the leiurotoxin I binding protein); (iii) the similarity of physiological actions between leiurotoxin I and apamin. Both toxins contract Taenia coli previously relaxed with epinephrine, both toxins block the after-hyperpolarization due to Ca2(+)-activated K+ channel activity in muscle cells in culture; (iv) the probable identity of binding sites for apamin and leiurotoxin I. In spite of a different chemical structure apamin competitively inhibits 125I-[Tyr2] leiurotoxin I binding and vice versa. Moreover, the peculiar effects of K+ on 125I-[Tyr2]leiurotoxin I binding are identical to those previously observed for 125I-apamin binding.