webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

MMAE-[d8]

  CAS No.: 2070009-72-0   Cat No.: BADC-00635   Purity: 98% by HPLC; 98% atom D 4.5  

MMAE-[d8] is a labelled analogue of MMAE, which is a potent mitotic inhibitor and a tubulin inhibitor.

MMAE-[d8]

Structure of 2070009-72-0

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin
Molecular Formula
C39H59D8N5O7
Molecular Weight
726.03
Target
Microtubule/Tubulin
Shipping
Room temperature
Shipping
Store at -20°C

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
10 mg $5990 In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
D8-MMAE; D8-Monomethyl auristatin E
IUPAC Name
(2S)-2,3,4,4,4-pentadeuterio-N-[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-N-methyl-2-[[(2S)-3-methyl-2-(methylamino)butanoyl]amino]-3-(trideuteriomethyl)butanamide
Canonical SMILES
CCC(C)C(C(CC(=O)N1CCCC1C(C(C)C(=O)NC(C)C(C2=CC=CC=C2)O)OC)OC)N(C)C(=O)C(C(C)C)NC(=O)C(C(C)C)NC
InChI
InChI=1S/C39H67N5O7/c1-13-25(6)34(43(10)39(49)33(24(4)5)42-38(48)32(40-9)23(2)3)30(50-11)22-31(45)44-21-17-20-29(44)36(51-12)26(7)37(47)41-27(8)35(46)28-18-15-14-16-19-28/h14-16,18-19,23-27,29-30,32-36,40,46H,13,17,20-22H2,1-12H3,(H,41,47)(H,42,48)/t25-,26+,27+,29-,30+,32-,33-,34-,35+,36+/m0/s1/i4D3,5D3,24D,33D
InChIKey
DASWEROEPLKSEI-CMHCZSPYSA-N
Density
1.1±0.1 g/cm3
Solubility
Soluble to 100 mg/ml (13774 mm, need ultrasonic) in DMSO
Appearance
Solid Power
Shelf Life
≥12 months if stored properly
Shipping
Room temperature
Storage
Store at -20°C
Boiling Point
873.5±65.0 °C at 760 mmHg
1.Intracellular Released Payload Influences Potency and Bystander-Killing Effects of Antibody-Drug Conjugates in Preclinical Models
Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, Nicholas ND, Okeley NM, Lyon RP, Benjamin DR, Law CL
Antibody-drug conjugates (ADC) comprise targeting antibodies armed with potent small-molecule payloads. ADCs demonstrate specific cell killing in clinic, but the basis of their antitumor activity is not fully understood. In this study, we investigated the degree to which payload release predicts ADC activity in vitro and in vivo ADCs were generated to target different receptors on the anaplastic large cell lymphoma line L-82, but delivered the same cytotoxic payload (monomethyl auristatin E, MMAE), and we found that the intracellular concentration of released MMAE correlated with in vitro ADC-mediated cytotoxicity independent of target expression or drug:antibody ratios. Intratumoral MMAE concentrations consistently correlated with the extent of tumor growth inhibition in tumor xenograft models. In addition, we developed a robust admixed tumor model consisting of CD30(+) and CD30(-) cancer cells to study how heterogeneity of target antigen expression, a phenomenon often observed in cancer specimens, affects the treatment response. CD30-targeting ADC delivering membrane permeable MMAE or pyrrolobenzodiazepine dimers demonstrated potent bystander killing of neighboring CD30(-) cells. In contrast, a less membrane permeable payload, MMAF, failed to mediate bystander killing in vivo, suggesting local diffusion and distribution of released payloads represents a potential mechanism of ADC-mediated bystander killing. Collectively, our findings establish that the biophysical properties and amount of released payloads are chief factors determining the overall ADC potency and bystander killing. Cancer Res; 76(9); 2710-9.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload Chemical Payload Protein Toxin Nanocarrier Microtubule Inhibitors DNA Damaging Agents RNA Polymerase Inhibitors Protein Degraders

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research ADC Payloads Explained: Current Types and Cutting-Edge Research Progress Tubulin Inhibitors - Highly Potential ADC Payloads

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: CL2 Linker | APN-PEG4-Amine hydrochloride | APN-PEG4-DBCO | APN-PEG36-tetrazine | APN-PEG4-BCN | 14-Benzoyltalatisamine Perchlorate | Seco-DuocarmycinDME | 1-(2,5-dioxopyrrolidin-1-yloxy)-4-((5-nitropyridin-2-yl)disulfanyl)-1-oxobutane-2-sulfonic acid | mDPR-Val-Cit-PAB-MMAE | 4-formylphenyl 3-iodo-4-methoxybenzoate | MMAE-[d8]
Send Inquiry
Verification code
Inquiry Basket