webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

SIA Crosslinker

  CAS No.: 39028-27-8   Cat No.: BADC-01120   Purity: > 99.3 % 4.5  

SIA Crosslinker is a heterobifunctional ADC linker featuring succinimidyl and iodoacetyl groups for targeted antibody modification, enabling stable and site-specific drug conjugation in ADC platforms.

SIA Crosslinker

Structure of 39028-27-8

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C6H6INO4
Molecular Weight
283.02
Shipping
Room temperature
Shipping
-20 °C

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
2,5-Dioxopyrrolidin-1-yl 2-iodoacetate; N-Succinimidyl Iodoacetate; Iodoacetic acid N-hydroxysuccinimide ester
IUPAC Name
(2,5-dioxopyrrolidin-1-yl) 2-iodoacetate
Canonical SMILES
C1CC(=O)N(C1=O)OC(=O)CI
InChI
InChI=1S/C6H6INO4/c7-3-6(11)12-8-4(9)1-2-5(8)10/h1-3H2
InChIKey
VRDGQQTWSGDXCU-UHFFFAOYSA-N
Density
2.110±0.10 g/cm<sup>3</sup> (Predicted)
Solubility
10 mm in DMSO
Melting Point
148 °C
Flash Point
144.7±28.4 °C
Index Of Refraction
1.615
PSA
63.68000
Vapor Pressure
0.0±0.7 mmHg at 25°C
Appearance
White to light yellow powder to crystal
Shipping
Room temperature
Storage
-20 °C
Pictograms
Irritant
Signal Word
Warning
Boiling Point
315.6±44.0 °C (Predicted)
1. Erythrocyte gangliosides act as receptors for Neisseria subflava: identification of the Sia-1 adhesin
G Nyberg, N Strömberg, A Jonsson, K A Karlsson, S Normark Infect Immun. 1990 Aug;58(8):2555-63. doi: 10.1128/iai.58.8.2555-2563.1990.
Neisseria gonorrhoeae was recently shown to bind to a subset of lactose-containing glycolipids (N. Strömberg, C. Deal, G. Nyberg, S. Normark, M. So, and K.-A. Karlsson, Proc. Natl. Acad. Sci. USA 85:4902-4906, 1988). A number of commensal Neisseria strains were also shown to be lactose binders. In addition, Neisseria subflava bound to immobilized gangliosides, such as hematoside and sialosyl paragloboside, carrying the NeuAc alpha 2-3Gal beta 1-4Glc sequence. To a lesser extent, N. gonorrhoeae also bound to this receptor in vitro. In N. subflava GN01, this binding property mediated agglutination of human erythrocytes in a neuraminidase-sensitive fashion. Nitrosoguanidine-induced nonhemagglutinative mutants of N. subflava GN01 had lost the ability to bind hematoside and sialosylparagloboside but remained able to bind lactosylceramide and gangliotetraosylceramide. These mutants fell into three classes with respect to their outer membrane protein profiles in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Class 1 mutants were identical to the parent strain save for the loss of a 27-kilodalton (kDa) protein. Class 2 mutants showed an outer membrane protein profile identical to that of the wild type, whereas mutants belonging to class 3 showed a number of changes, including the apparent absence of the 27-kDa protein. The 27-kDa protein from N. subflava GN01 was purified from the supernatant. A polyclonal antiserum to the purified Sia-1 protein as well as a Sia-1-specific monoclonal antibody inhibited hemagglutination by strain GN01. The purified Sia-1 protein in the presence of diluted anti-Sia-1 antiserum mediated a neuraminidase-sensitive hemagglutination. The purified Sia protein from a class 2 mutant was not able to hemagglutinate when cross-linked with antibodies, suggesting that it is a mutant form of Sia-1 affected in the receptor-binding site. Immunoelectron microscopy with a Sia-1-specific monoclonal antibody revealed that the adhesin was nonfimbrial in nature, with aggregates of the adhesin extended out from the cells in a patchy fashion.
2. Potential Roles of Siglecs in the Regulation of Allo-Immune Reaction
Songjie Cai, Jing Zhao, Takuya Ueno, Anil Chandraker Curr Protein Pept Sci. 2019;20(8):823-828. doi: 10.2174/1389203720666190507095759.
Siglecs are mammalian sialic acid (Sia) recognizing immuno-globulin-like receptors expressed across the major leukocyte lineages, and function to recognize ubiquitous Sia epitopes on the cell surface. Many Siglecs are inhibitory receptors expressed on innate immune cells, they also have a role in maintaining B cell tolerance as well as modulating the activation of conventional and plasmocytic dendritic cells. Through these and other roles they contribute directly and indirectly to the regulation of T cell function. Siglecs have been identified to play key roles in several forms of blood cancers, autoimmune and infection deceases. So far as we know, there's no Siglecs related research works on solid organ transplantation. In this review, we describe our understanding of the potential roles of Siglecs in the regulation of immune cell function, which may be crosslinked to allo-rejection and ischemia-reperfusion injury.
3. Assessment of Crosslinkers between Peptide Antigen and Carrier Protein for Fusion Peptide-Directed Vaccines against HIV-1
Li Ou, et al. Vaccines (Basel). 2022 Nov 12;10(11):1916. doi: 10.3390/vaccines10111916.
Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: H-D-trans-Hyp-OMe HCl | Glucocorticoid receptor agonist-1 phosphate Gly-Glu-Br | Fluorescein-DBCO | Boc-D-trans-Hyp-OH | DBCO-PEG3-oxyamine | Me-Tet-PEG5-NHS | Me-Tet-PEG9-COOH | Me-Tet-PEG5-COOH | Mal-PEG2-VCP-NB | m-PEG2-Tos | SIA Crosslinker
Send Inquiry
Verification code
Inquiry Basket