webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

PROTAC BRD4 Degrader-11

  CAS No.:   Cat No.: BADC-01389   Purity: 98% 4.5  

PROTAC BRD4 Degrader-11 is a PROTAC linked by ligands for von Hippel-Lindau and BRD4. It is conjugated with STEAP1 and CLL1 antibodies to degrade BRD4 protein in PC3 prostate cancer cells with DC50s of 0.23 nM and 0.38 nM, respectively.

PROTAC BRD4 Degrader-11

Structure of

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin
Molecular Formula
C61H75F2N9O12S4
Molecular Weight
1292.56
Shipping
store at -20°C, sealed storage, away from moisture and light

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
S-((R)-1-(((((3R,5S)-1-((S)-2-(11-(7-(3,5-difluoropyridin-2-yl)-2-methyl-10-((methylsulfonyl)methyl)-3-oxo-3,4,6,7-tetrahydro-2H-2,4,7-triazadibenzo[cd,f]azulene-9-carboxamido)undecanamido)-3,3-dimethylbutanoyl)-5-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-3-yl)oxy)carbonyl)oxy)propan-2-yl) methanesulfonothioate
IUPAC Name
[(3R,5S)-1-[(2S)-2-[11-[[8-(3,5-difluoropyridin-2-yl)-15-methyl-4-(methylsulfonylmethyl)-14-oxo-8,12,15-triazatetracyclo[8.6.1.02,7.013,17]heptadeca-1(16),2(7),3,5,10,13(17)-hexaene-5-carbonyl]amino]undecanoylamino]-3,3-dimethylbutanoyl]-5-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methylcarbamoyl]pyrrolidin-3-yl] [(2R)-2-methylsulfonylsulfanylpropyl] carbonate
Canonical SMILES
CC1=C(SC=N1)C2=CC=C(C=C2)CNC(=O)C3CC(CN3C(=O)C(C(C)(C)C)NC(=O)CCCCCCCCCCNC(=O)C4=CC5=C(C=C4CS(=O)(=O)C)C6=CN(C(=O)C7=C6C(=CN7)CN5C8=C(C=C(C=N8)F)F)C)OC(=O)OCC(C)SS(=O)(=O)C
InChI
InChI=1S/C61H75F2N9O12S4/c1-36(86-88(8,81)82)33-83-60(78)84-43-25-49(57(75)67-27-38-18-20-39(21-19-38)53-37(2)68-35-85-53)72(31-43)59(77)54(61(3,4)5)69-50(73)17-15-13-11-9-10-12-14-16-22-64-56(74)44-26-48-45(23-40(44)34-87(7,79)80)46-32-70(6)58(76)52-51(46)41(28-65-52)30-71(48)55-47(63)24-42(62)29-66-55/h18-21,23-24,26,28-29,32,35-36,43,49,54,65H,9-17,22,25,27,30-31,33-34H2,1-8H3,(H,64,74)(H,67,75)(H,69,73)/t36-,43-,49+,54-/m1/s1
InChIKey
XFVLGTSZPLRRLI-HXMREKMRSA-N
Appearance
Solid
Storage
store at -20°C, sealed storage, away from moisture and light
1. Antibody-PROTAC Conjugates Enable HER2-Dependent Targeted Protein Degradation of BRD4
James Richard Baker, Cyrille S Kounde, Edward W Tate, Marı A Maneiro, Maria M Shchepinova, Vijay Chudasama, Nafsika Forte ACS Chem Biol . 2020 Jun 19;15(6):1306-1312. doi: 10.1021/acschembio.0c00285.
Targeting protein degradation with Proteolysis-Targeting Chimeras (PROTACs) is an area of great current interest in drug discovery. Nevertheless, although the high effectiveness of PROTACs against a wide variety of targets has been established, most degraders reported to date display limited intrinsic tissue selectivity and do not discriminate between cells of different types. Here, we describe a strategy for selective protein degradation in a specific cell type. We report the design and synthesis of a trastuzumab-PROTAC conjugate (Ab-PROTAC3) in which E3 ligase-directed degrader activity is caged with an antibody linker which can be hydrolyzed following antibody-PROTAC internalization, releasing the active PROTAC and inducing catalytic protein degradation. We show that3selectively targets bromodomain-containing protein 4 (BRD4) for degradation only in HER2 positive breast cancer cell lines, while sparing HER2 negative cells. Using live cell confocal microscopy, we show internalization and lysosomal trafficking of the conjugate specifically in HER2 positive cells, leading to the release of active PROTAC in quantities sufficient to induce potent BRD4 degradation. These studies demonstrate proof-of-concept for tissue-specific BRD4 degradation, overcoming limitations of PROTAC selectivity, with significant potential for application to novel targets.
2. Degradation of proteins by PROTACs and other strategies
Haopeng Sun, Yang Wang, Xueyang Jiang, Feng Feng, Wenyuan Liu Acta Pharm Sin B . 2020 Feb;10(2):207-238. doi: 10.1016/j.apsb.2019.08.001.
Blocking the biological functions of scaffold proteins and aggregated proteins is a challenging goal. PROTAC proteolysis-targeting chimaera (PROTAC) technology may be the solution, considering its ability to selectively degrade target proteins. Recent progress in the PROTAC strategy include identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-Von-Hippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this perspective, we summarized recent meaningful research of PROTAC, including the types of degradation proteins, preliminary biological data in vitro and in vivo, and new E3 ubiquitin ligases. Importantly, the molecular design, optimization strategy and clinical application of candidate molecules are highlighted in detail. Future perspectives for development of advanced PROTAC in medical fields have also been discussed systematically.
3. Bivalent Ligands for Protein Degradation in Drug Discovery
Marcel Scheepstra, Luc van Hijfte, Koen F W Hekking, Rutger H A Folmer Comput Struct Biotechnol J . 2019 Jan 25;17:160-176. doi: 10.1016/j.csbj.2019.01.006.
Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload Chemical Payload Protein Toxin Nanocarrier Microtubule Inhibitors DNA Damaging Agents RNA Polymerase Inhibitors Protein Degraders

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research ADC Payloads Explained: Current Types and Cutting-Edge Research Progress Tubulin Inhibitors - Highly Potential ADC Payloads

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: DC10SMe | DC44 | BAY 1135626 | Corixetan | 1-{[4-({4-[(2,5-dioxo-3-sulfopyrrolidin-1-yl)oxy]-4-oxobutyl}disulfanyl)butanoyl]oxy}-2,5-dioxopyrrolidine-3-sulfonic acid | Ald-Ph-amido-PEG23-OPSS | TAM470 | Tolytoxin | PROTAC BRD4 Degrader-11
Send Inquiry
Verification code
Inquiry Basket