webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Luteolin 7-O-glucoside

  CAS No.: 5373-11-5   Cat No.: BADC-00253   Purity: 98% (HPLC) 4.5  

Luteolin 7-O-glucoside acts as a novel ADC payload with anti-proliferative properties, supporting antibody-drug conjugates in targeted cancer therapy by interfering with tumor cell signaling pathways.

Luteolin 7-O-glucoside

Structure of 5373-11-5

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin
Molecular Formula
C21H20O11
Molecular Weight
448.39
Shipping
Room temperature
Shipping
Hygroscopic, Refrigerator, under inert atmosphere

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
100 mg $299 In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxo-4H-chromen-7-yl-D-glucopyranoside; Cynaroside; Luteoloside; Luteolin 7-glucoside
IUPAC Name
2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one
Canonical SMILES
C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4C(C(C(C(O4)CO)O)O)O)O)O)O
InChI
InChI=1S/C21H20O11/c22-7-16-18(27)19(28)20(29)21(32-16)30-9-4-12(25)17-13(26)6-14(31-15(17)5-9)8-1-2-10(23)11(24)3-8/h1-6,16,18-25,27-29H,7H2/t16-,18-,19+,20-,21-/m1/s1
InChIKey
PEFNSGRTCBGNAN-QNDFHXLGSA-N
Density
1.7±0.1 g/cm3
Solubility
Soluble in dimethylsulfoxid, dimethylformamid, insoluble in ethanol and water
Melting Point
240 - 242°C
Flash Point
296.8±27.8 °C
Index Of Refraction
1.740
PSA
190.28000
Vapor Pressure
0.0±3.2 mmHg at 25°C
Appearance
Dark Yellow Solid
Quantity
Milligrams-Grams
Quality Standard
Enterprise Standard
Shipping
Room temperature
Storage
Hygroscopic, Refrigerator, under inert atmosphere
Boiling Point
838.10°C at 760 mmHg (est)
Form
Powder
In Vitro
Cynaroside inhibited the expression of iNOS, COX-2, TNF-α, and IL-6 in LPS-stimulated hPDL and RAW264.7 cells without cytotoxicity. Furthermore, cynaroside significantly suppressed LPS-induced protein expression of matrix metalloproteinase 3. Additionally, cynaroside prevented LPS-induced NF-κB p65 subunit translocation to the nucleus by inhibiting the phosphorylation and degradation of IκB-α. Moreover, cynaroside could restore the mineralization ability of hPDL cells reduced by LPS.
In Vivo
Building upon a sepsis mouse model, it was observed cynaroside alleviated serum levels of inflammatory factors including IL-1β and TNF-α at 5 and 10 mg/kg. The pathological injury of heart, kidney and lung was remarkedly attenuated as the levels of blood urea nitrogen, creatinine, creatine kinase-MB and lactate dehydrogenase were reduced nearly 2.8-, 2.7-, 2.4-, and 2.5-fold as compared with the sepsis mice, respectively. The research further demonstrated cynaroside suppressed the biomarker of pro-inflammatory macrophage M1 phenotype (iNOS+) and promotes the anti-inflammatory M2 polarization (CD206+) in the injury organs of septic mice. Mechanistic research verified cynaroside inhibited LPS-induced polarization of macrophage into M1 phenotype, which can be highly blocked by Nrf2 inhibitor. Expectedly, Nrf2 and its downstream (Heme oxygenase-1 (HO-1)) was upregulated in injury organs after treating with cynaroside, indicating the involvement of Nrf2 signaling.
1.Superheated liquid extraction of oleuropein and related biophenols from olive leaves.
Japón-Luján R;Luque de Castro MD J Chromatogr A. 2006 Dec 15;1136(2):185-91. Epub 2006 Oct 11.
Oleuropein and other healthy olive biophenols (OBPs) such as verbacoside, apigenin-7-glucoside and luteolin-7-glucoside have been extracted from olive leaves by using superheated liquids and a static-dynamic approach. Multivariate methodology has been used to carry out a detailed optimisation of the extraction. Under the optimal working conditions, complete removal without degradation of the target analytes was achieved in 13 min. The extract was injected into a chromatograph-photodiode array detector assembly for individual separation-quantification. The proposed approach - which provides more concentrated extracts than previous alternatives - is very useful to study matrix-extractant analytes partition. In addition, the efficacy of superheated liquids to extract OBPs, the simplicity of the experimental setup, its easy automation and low acquisition and maintenance costs make the industrial implementation of the proposed method advisable.
2.Dietary Exposure Risk Assessment of Flonicamid and Its Effect on Constituents after Application in Lonicerae Japonicae Flos.
Li J;Wang Y;Xue J;Wang P;Shi S Chem Pharm Bull (Tokyo). 2018 Jun 1;66(6):608-611. doi: 10.1248/cpb.c17-00985. Epub 2018 Mar 14.
To investigate the dietary exposure risk of flonicamid application on Lonicerae Japonicae Flos and the effect of flonicamid on constituents of Lonicerae Japonicae Flos, field experiments were conducted in Fengqiu, Henan province, and flonicamid residue in samples collected was detected by gas chromatography equipped with electron capture detector (GC-ECD). And chlorogenic acid and luteoloside were determined by HPLC. Dietary exposure risk assessment was conducted through comparing the estimated daily intake (EDI) which was calculated by using the consumed residual level along with the acceptable daily intake (ADI). The effect of flonicamid on chlorogenic acid and luteoloside were obtained by ANOVA statistical analysis and least significant difference (LSD)-t test. The results showed that the terminal-residue contents of flonicamid were under 1.6 mg kg;-1;. And risk quotient ranged from 0.0011 to 0.0028, indicating the long-term exposure to flonicamid residual through consumption of Lonicerae Japonicae Flos in consumers was relatively low. Flonicamid could suppress the generation of luteoloside, so it was not advised to be used in L. japonica flowering phase. The study aims at providing the useful suggestion on the reasonable flonicamid usage and the reference for the establishment of maximum residue limits (MRLs) of flonicamid in Lonicerae Japonicae Flos.
3.Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102.
Edenharder R;Grünhage D Mutat Res. 2003 Sep 9;540(1):1-18.
Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload Chemical Payload Protein Toxin Nanocarrier Microtubule Inhibitors DNA Damaging Agents RNA Polymerase Inhibitors Protein Degraders

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research ADC Payloads Explained: Current Types and Cutting-Edge Research Progress Tubulin Inhibitors - Highly Potential ADC Payloads

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: N3-L-Orn(Fmoc)-OH | N3-L-Dab(Fmoc)-OH | N3-L-Cit-OH | Cryptophycin 1 | Telomestatin | Paclitaxel D5 | Seco-Duocarmycin MB | Ungerine Nitrate | Galantamine hydrobromide | CBT-161 | Luteolin 7-O-glucoside
Send Inquiry
Verification code
Inquiry Basket