webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Nemorubicin

  CAS No.: 108852-90-0   Cat No.: BADC-00088   Purity: ≥97% by HPLC HPLC 4.5  

Nemorubicin, is a doxorubicin derivative that differs significantly from its parent drug in terms of spectrum of antitumor activity, metabolism and toxicity profile. The drug is active on tumors resistant to alkylating agents, topoisomerase II inhibitors and platinum derivatives.

Nemorubicin

Structure of 108852-90-0

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin
Molecular Formula
C32H37NO13
Molecular Weight
643.23
Shipping
Room temperature
Shipping
Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
10 mg $199 In stock
100 mg $629 In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Methoxymorpholinyldoxorubicin; PNU152243A; PNU-152243A; PNU 152243A; (1S,3S)-3,5,12-trihydroxy-3-(hydroxyacetyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 2,3,6-trideoxy-3-[(2S)-2-methoxymorpholin-4-yl]-α-L-lyxo-hexopyranoside; 5,12-Naphthacenedione, 7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-10-[[2,3,6-trideoxy-3-[(2S)-2-methoxy-4-morpholinyl]-α-L-lyxo-hexopyranosyl]oxy]-, (8S,10S)-; 3'-Deamino-3'-(2(S)-methoxy-4-morpholinyl)doxorubicin; Methoxymorpholino-doxorubicin
IUPAC Name
(7S,9S)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[(2R,4S,5S,6S)-5-hydroxy-4-[(2S)-2-methoxymorpholin-4-yl]-6-methyloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione
Canonical SMILES
CC1C(C(CC(O1)OC2CC(CC3=C(C4=C(C(=C23)O)C(=O)C5=C(C4=O)C=CC=C5OC)O)(C(=O)CO)O)N6CCOC(C6)OC)O
InChI
InChI=1S/C32H37NO13/c1-14-27(36)17(33-7-8-44-22(12-33)43-3)9-21(45-14)46-19-11-32(41,20(35)13-34)10-16-24(19)31(40)26-25(29(16)38)28(37)15-5-4-6-18(42-2)23(15)30(26)39/h4-6,14,17,19,21-22,27,34,36,38,40-41H,7-13H2,1-3H3/t14-,17-,19-,21-,22-,27+,32-/m0/s1
InChIKey
CTMCWCONSULRHO-UHQPFXKFSA-N
Density
1.55±0.1 g/cm3 (Predicted)
Solubility
Soluble in DMSO; Insoluble in Water
Appearance
Red to Pink Solid Powder
Shipping
Room temperature
Storage
Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)
Pictograms
Irritant
Signal Word
Warning
Boiling Point
852.2±65.0°C (Predicted)
Current Developer
Nerviano Medical Sciences
In Vivo
Human liver microsomes (HLM) and microsomes from genetically engineered cell lines expressing individual human cytochrome P450s (CYP) were used to study Nemorubicin (MMDX) biotransformation. HLMs converted MMDX to a major metabolite, whose retention time in liquid chromatography and ion fragmentation in tandem mass spectrometry were identical to those of synthetic PNU-159682. In a bank of HLMs from 10 donors, rates of PNU-159682 formation correlated significantly with three distinct CYP3A-mediated activities.
1.Nemorubicin and doxorubicin bind the G-quadruplex sequences of the human telomeres and of the c-MYC promoter element Pu22.
Scaglioni L1, Mondelli R1, Artali R2, Sirtori FR3, Mazzini S4. Biochim Biophys Acta. 2016 Jun;1860(6):1129-38. doi: 10.1016/j.bbagen.2016.02.011. Epub 2016 Feb 23.
BACKGROUND: Intra-molecular G-quadruplex structures are present in the guanine rich regions of human telomeres and were found to be prevalent in gene promoters. More recently, the targeting of c-MYC transcriptional control has been suggested, because the over expression of the c-MYC oncogene is one of the most common aberration found in a wide range of human tumors.
2.LC-MS-MS determination of nemorubicin (methoxymorpholinyldoxorubicin, PNU-152243A) and its 13-OH metabolite (PNU-155051A) in human plasma.
Fraier D1, Frigerio E, Brianceschi G, James CA. J Pharm Biomed Anal. 2002 Oct 15;30(3):377-89.
A selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for quantitative determination of nemorubicin, (PNU-152243A, 3'-deamino-3'[2(S)-methoxy-4-morpholinyl]doxorubicin) hydrocloride and its reduced metabolite PNU-155051 in human plasma has been developed and validated. The method involved solid phase extraction (SPE) in 96-well plates. Plasma samples (0.5 ml plasma, spiked with doxorubicin as internal standard and diluted with 0.5 ml of 0.01 M borate buffer, pH 8.4) were extracted using Oasis HLB SPE material. The elution of PNU-152243, PNU-155051 and of IS was performed with 1 ml of methanol:0.1 M formic acid mixture (90:10, v/v). The organic phase was reduced to dryness under a stream of nitrogen at 20 degrees C and the residue was reconstituted with 0.25 ml of 10 mM ammonium formate buffer pH 4.15:acetonitrile mixture (90:10, v/v). Aliquots of 60 microl of the resulting solution were injected onto the LC-MS-MS system.
3.The interaction of nemorubicin metabolite PNU-159682 with DNA fragments d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) shows a strong but reversible binding to G:C base pairs.
Mazzini S1, Scaglioni L, Mondelli R, Caruso M, Sirtori FR. Bioorg Med Chem. 2012 Dec 15;20(24):6979-88. doi: 10.1016/j.bmc.2012.10.033. Epub 2012 Nov 3.
The antitumor anthracycline nemorubicin is converted by human liver microsomes to a major metabolite, PNU-159682 (PNU), which was found to be much more potent than its parent drug toward cultured tumor cells and in vivo tumor models. The mechanism of action of nemorubicin appears different from other anthracyclines and until now is the object of studies. In fact PNU is deemed to play a dominant, but still unclear, role in the in vivo antitumor activity of nemorubicin. The interaction of PNU with the oligonucleotides d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) was studied with a combined use of (1)H and (31)P NMR spectroscopy and by ESI-mass experiments. The NMR studies allowed to establish that the intercalation between the base pairs of the duplex leads to very stable complexes and at the same time to exclude the formation of covalent bonds. Melting experiments monitored by NMR, allowed to observe with high accuracy the behaviour of the imine protons with temperature, and the results showed that the re-annealing occurs after melting.
4.Formation and antitumor activity of PNU-159682, a major metabolite of nemorubicin in human liver microsomes.
Quintieri L1, Geroni C, Fantin M, Battaglia R, Rosato A, Speed W, Zanovello P, Floreani M. Clin Cancer Res. 2005 Feb 15;11(4):1608-17.
PURPOSE: Nemorubicin (3'-deamino-3'-[2''(S)-methoxy-4''-morpholinyl]doxorubicin; MMDX) is an investigational drug currently in phase II/III clinical testing in hepatocellular carcinoma. A bioactivation product of MMDX, 3'-deamino-3'',4'-anhydro-[2''(S)-methoxy-3''(R)-oxy-4''-morpholinyl]doxorubicin (PNU-159682), has been recently identified in an incubate of the drug with NADPH-supplemented rat liver microsomes. The aims of this study were to obtain information about MMDX biotransformation to PNU-159682 in humans, and to explore the antitumor activity of PNU-159682.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload Chemical Payload Protein Toxin Nanocarrier Microtubule Inhibitors DNA Damaging Agents RNA Polymerase Inhibitors Protein Degraders

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research ADC Payloads Explained: Current Types and Cutting-Edge Research Progress Tubulin Inhibitors - Highly Potential ADC Payloads

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: Vc-MMAD | 4-Formyl-N-(2-(m-Tolyloxy)ethyl)benzamide | Boc-amino-PEG3-SS-acid | Exatecan | NH2-C5-PEG4-N3-L-Lysine-PEG3-N3 | (2S,2'S)-Bis(2,5-Dioxopyrrolidin-1-yl) 4,4'-Disulfanediylbis(2-Acetamidobutanoate) | Fmoc-VC-PAB-MMAE | tert-butyl 1-(4-formylphenyl)-1-oxo-5,8,11-trioxa-2-azatridecan-13-oate | CL2A | MC-VC-PABC-MMAE | Nemorubicin
Send Inquiry
Verification code
Inquiry Basket