webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Maleimide-NH-PEG3-CH2CH2COOPFP Ester

  CAS No.: 2101206-13-5   Cat No.: BADC-00445   Purity: 98% 4.5  

Maleimide-NH-PEG3-CH2CH2COOPFP Ester is a basic compound widely used in the biomedical field. It is an indispensable linker for coordinating the conjugation of different biomolecules, thereby accelerating the precise administration of therapeutics and diagnostics. Its widespread use in the synthesis of pioneering drug therapies and bioconjugates has led to promising clinical benefits.

Maleimide-NH-PEG3-CH2CH2COOPFP Ester

Structure of 2101206-13-5

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C21H21F5N2O8
Molecular Weight
524.39
Shipping
-20°C (International: -20°C)
Shipping
-20°C

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
perfluorophenyl 15-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-13-oxo-3,6,9-trioxa-12-azapentadecan-1-oate
IUPAC Name
(2,3,4,5,6-pentafluorophenyl) 2-[2-[2-[2-[3-(2,5-dioxopyrrol-1-yl)propanoylamino]ethoxy]ethoxy]ethoxy]acetate
Canonical SMILES
C1=CC(=O)N(C1=O)CCC(=O)NCCOCCOCCOCC(=O)OC2=C(C(=C(C(=C2F)F)F)F)F
InChI
InChI=1S/C21H21F5N2O8/c22-16-17(23)19(25)21(20(26)18(16)24)36-15(32)11-35-10-9-34-8-7-33-6-4-27-12(29)3-5-28-13(30)1-2-14(28)31/h1-2H,3-11H2,(H,27,29)
InChIKey
ZBIQVRXGRCZPMF-UHFFFAOYSA-N
Appearance
Soild powder
Shipping
-20°C (International: -20°C)
Storage
-20°C

Maleimide-NH-PEG3-CH2CH2COOPFP Ester, a versatile chemical reagent with widespread utility in bioconjugation and surface modification across scientific and industrial domains, is explored through four key applications:

Protein Conjugation: Serving as a pivotal player in protein modification and labeling, Maleimide-NH-PEG3-CH2CH2COOPFP Ester engages in thiol-specific conjugation processes, enabling precise attachment of polymers, dyes, or biomolecules at specific protein sites through interaction with free thiols.

Surface Functionalization: This versatile ester plays a critical role in surface modification by endowing surfaces with PEGylated chains to enhance biocompatibility and curtail nonspecific binding in biosensors and medical devices. By introducing a PEG spacer, the compound establishes a hydrophilic shield that deters fouling and enhances instrument performance, ultimately advancing biomaterials and medical device technology.

Drug Delivery Systems: Maleimide-NH-PEG3-CH2CH2COOPFP Ester emerges as a linchpin in designing targeted drug delivery systems by facilitating attachment of targeting ligands or therapeutic agents to nanoparticles and liposomes. This precision-driven mechanism heightens drug efficacy, diminishes adverse effects, and holds promising implications in cancer treatment and personalized medicine, offering finely honed strategies for potent therapeutic outcomes.

Polymer Synthesis: Within polymer chemistry, this compound assumes a central role in synthesizing functionalized PEG polymers for diverse applications. By introducing reactive ester groups, researchers fashion block copolymers and hydrogels with tailored properties suitable for applications like tissue engineering and regenerative medicine. This versatility enables fine-tuning of physical and biochemical attributes of polymer-based materials, fostering the creation of bespoke materials for specific applications.

1. α-Imino Esters in Organic Synthesis: Recent Advances
Bagher Eftekhari-Sis, Maryam Zirak Chem Rev . 2017 Jun 28;117(12):8326-8419. doi: 10.1021/acs.chemrev.7b00064.
α-Imino esters are useful precursors for the synthesis of a variety of types of natural and unnatural α-amino acid derivatives, with a wide range of biological activities. Due to the adjacent ester group, α-imino esters are more reactive relative to other types of imines and undergo different kinds of reactions, including organometallics addition, metal catalyzed vinylation and alkynylation, aza-Henry, aza-Morita-Baylis-Hillman, imino-ene, Mannich-type, and cycloaddition reactions, as well as hydrogenation and reduction. This review discusses the mechanism, scope, and applications of the reactions of α-imino esters and related compounds in organic synthesis, covering the literature from the last 12 years.
2. Fast-Acting Antibacterial, Self-Deactivating Polyionene Esters
Christian Krumm, Lena Benski, Joerg C Tiller, Manfred Köller, Franziska Oberhaus, Jens Wilken, Sylvia Trump ACS Appl Mater Interfaces . 2020 May 13;12(19):21201-21209. doi: 10.1021/acsami.9b19313.
Biocidal compounds that quickly kill bacterial cells and are then deactivated in the surrounding without causing environmental problems are of great current interest. Here, we present new biodegradable antibacterial polymers based on polyionenes with inserted ester functions (PBI esters). The polymers are prepared by polycondensation reaction of 1,4-dibromobutene and different tertiary diaminodiesters. The resulting PBI esters are antibacterially active against a wide range of bacterial strains and were found to quickly kill these cells within 1 to 10 min. Because of hydrolysis of the ester groups, the PBI esters are degraded and deactivated in aqueous media. The degradation rate depends on the backbone structure and the pH. The structure of the polymers also controls the deactivation mechanism. While the more hydrophilic polymers require hydrolyses of only 19 to 30% of the ester groups to become practically inactive, the more hydrophobic PBI esters require up to 85% hydrolysis to achieve the same result. Thus, depending on the environmental conditions and the chemical nature, the PBI esters can be active for only 20 min or for at least one week.
3. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance
Erik M Larsen, R Jeremy Johnson Drug Dev Res . 2019 Feb;80(1):33-47. doi: 10.1002/ddr.21468.
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: 2,5-dioxopyrrolidin-1-yl 4-methyl-4-((5-nitropyridin-2-yl)disulfanyl)pentanoate
Send Inquiry
Verification code
Inquiry Basket