webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Fmoc-DAP-N3

  CAS No.: 1021422-85-4   Cat No.: BADC-01966   Purity: ≥ 99% (HPLC) 4.5  

Fmoc-DAP-N3 is an azido-functionalized Fmoc-protected linker designed for site-specific ADC synthesis, enabling selective click chemistry and efficient antibody modification.

Fmoc-DAP-N3

Structure of 1021422-85-4

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C18H18N4O2
Molecular Weight
322.40
Storage
Store at 2-8 °C

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
1-(Fmoc-amino)-3-azidopropylene; 1-(Fmoc-amino)-3-azidopropane; 9H-Fluoren-9-ylmethyl N-(3-azidopropyl)carbamate
IUPAC Name
9H-fluoren-9-ylmethyl N-(3-azidopropyl)carbamate
Canonical SMILES
C1=CC=C2C(=C1)C(C3=CC=CC=C32)COC(=O)NCCCN=[N+]=[N-]
InChI
InChI=1S/C18H18N4O2/c19-22-21-11-5-10-20-18(23)24-12-17-15-8-3-1-6-13(15)14-7-2-4-9-16(14)17/h1-4,6-9,17H,5,10-12H2,(H,20,23)
InChIKey
XXWDONRFYHZMAK-UHFFFAOYSA-N
Melting Point
80-88°C
Appearance
Whitw crytalline powder
Storage
Store at 2-8 °C

Fmoc-DAP-N3 is a protected derivative of diaminopropionic acid, commonly used in peptide synthesis and bioconjugation applications. Here are some key applications of Fmoc-DAP-N3:

Peptide Synthesis: Fmoc-DAP-N3 is employed in solid-phase peptide synthesis (SPPS) for creating complex peptides with functional groups. The azide group on Fmoc-DAP-N3 can be used for subsequent click chemistry reactions, enabling the attachment of various molecules to the peptide. This facilitates the production of peptides with tailored functionalities for research and therapeutic purposes.

Bioconjugation: In bioconjugation, Fmoc-DAP-N3 allows for the convenient attachment of peptides to other biomolecules such as proteins or nucleic acids through click chemistry. The azide group reacts with alkynes in a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, forming a stable triazole linkage. This method is widely used in the development of biomolecule conjugates for drug delivery, imaging, and diagnostic applications.

Drug Development: Fmoc-DAP-N3 can be used in the development of drug candidates by linking active pharmaceutical ingredients (APIs) to targeting peptides. The azide functionality enables easy and efficient conjugation with various drug molecules, enhancing their delivery and specificity. This approach can improve the therapeutic index of drugs and reduce off-target effects.

Protein Engineering: In protein engineering, Fmoc-DAP-N3 can be incorporated into protein sequences to introduce reactive azide groups. This allows site-specific modification of proteins through click chemistry, facilitating the study of protein interactions and functions. Such modifications can be used to enhance protein stability, activity, or for the creation of novel protein-based materials.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: MAL-di-EG-Val-Cit-PAB-MMAF
Send Inquiry
Verification code
Inquiry Basket