webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Fmoc-(4S)-4-Azido-D-Proline

  CAS No.: 2137142-63-1   Cat No.: BADC-01977   Purity: ≥ 99% (HPLC) 4.5  

Fmoc-(4S)-4-Azido-D-Proline is a chiral azide-functionalized ADC linker amino acid with Fmoc protection, enabling precise site-specific click chemistry for stable and efficient antibody-drug conjugation.

Fmoc-(4S)-4-Azido-D-Proline

Structure of 2137142-63-1

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C20H18N4O4
Molecular Weight
378.40
Shipping
Store at 2-8 °C

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Fmoc-Pro(4-N3) (2R,4S); Fmoc-(2R,4S)-4-azidoproline
IUPAC Name
(2R,4S)-4-azido-1-(9H-fluoren-9-ylmethoxycarbonyl)pyrrolidine-2-carboxylic acid
Canonical SMILES
C1C(CN(C1C(=O)O)C(=O)OCC2C3=CC=CC=C3C4=CC=CC=C24)N=[N+]=[N-]
InChI
InChI=1S/C20H18N4O4/c21-23-22-12-9-18(19(25)26)24(10-12)20(27)28-11-17-15-7-3-1-5-13(15)14-6-2-4-8-16(14)17/h1-8,12,17-18H,9-11H2,(H,25,26)/t12-,18+/m0/s1
InChIKey
HOPXMBBEYJTPNX-KPZWWZAWSA-N
Melting Point
140-144°C
Appearance
White crystalline powder
Storage
Store at 2-8 °C
1. Total Synthesis of Alloviroidin
Carol M Taylor, Samuel K Kutty, Benson J Edagwa Org Lett. 2019 Apr 5;21(7):2281-2284. doi: 10.1021/acs.orglett.9b00567. Epub 2019 Mar 12.
Alloviroidin is a cyclic heptapeptide, produced by several species of Amanita mushrooms, that demonstrates high affinity for F-actin as is characteristic of virotoxins and phallotoxins. Alloviroidin was synthesized via a [3 + 4] fragment condensation of Fmoc-d-Thr(OTBS)-d-Ser(OTBS)-(2 S,3 R,4 R)-DHPro(OTBS)2-OH and H-Ala-Trp(2-SO2Me)-(2 S,4 S)-DHLeu(5-OTBS)-Val-OMe to form bond A. The linear heptapeptide favored a turn conformation, facilitating cyclization between Val1 and d-Thr2 (position B). Global deprotection and HPLC purification afforded alloviroidin with NMR spectra in excellent agreement with the natural product.
2. Interleukin-1 Receptor Modulation Using β-Substituted α-Amino-γ-Lactam Peptides From Solid-Phase Synthesis and Diversification
Azade Geranurimi, Colin W H Cheng, Christiane Quiniou, France Côté, Xin Hou, Isabelle Lahaie, Amarilys Boudreault, Sylvain Chemtob, William D Lubell Front Chem. 2020 Dec 21;8:610431. doi: 10.3389/fchem.2020.610431. eCollection 2020.
As a key cytokine mediator of inflammation, interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and activates various downstream signaling mediators, including NF-κB, which is required for immune vigilance and cellular protection. Toward the development of IL-1-targeting therapeutics which exhibit functional selectivity, the all-D-amino acid peptide 1 (101.10, H-D-Arg-D-Tyr-D-Thr-D-Val-D-Glu-D-Leu-D-Ala-NH2) was conceived as an allosteric IL-1R modulator that conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Employing β-hydroxy-α-amino-γ-lactam (Hgl) stereoisomers to study the conformation about the Thr3 residue in 1, [(3R,4S)-Hgl3]-1 (2b), among all possible diastereomers, was found to exhibit identical in vitro and in vivo activity as the parent peptide and superior activity to the α-amino-γ-lactam (Agl) counterpart. Noting the relevance of the β-hydroxyl substituent and configuration for the activity of (3R,4S)-2b, fifteen different β-substituted-Agl3 analogs of 1 (e.g., 2c-q) have now been synthesized by a combination of solution- and solid-phase methods employing N-Fmoc-β-substituted-Agl3-Val-OH dipeptide building blocks. Introduction of a β-azido-Agl3 residue into the resin bound peptide and subsequent reduction and CuAAC chemistry gave access to a series of amine and triazole derivatives (e.g., 2h-q). β-Substituted-[Agl3]-1 analogs 2c-q exhibited generally similar circular dichroism (CD) spectra as that of Hgl analog 2b in water, presenting curve shapes indicative of β-turn structures. The relevance of the β-substituent was indicated in rodent models of preterm labor and retinopathy of prematurity (ROP), in which certain analogs inhibited preterm birth and vaso-obliteration, respectively, with activity similar to 1 and 2b. The β-substituted-[Agl3]-1 analogs exhibited functional selectivity on IL-1-induced signaling pathways. The described solid-phase method has provided discerning probes for exploring peptide structure-activity relationships and valuable leads for developing prototypes to treat inflammatory events leading to prematurity and retinopathy of prematurity, which are leading causes of infant morbidity and blindness respectively.
3. (2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline: two conformationally distinct proline amino acids for sensitive application in 19F NMR
Caitlin M Tressler, Neal J Zondlo J Org Chem. 2014 Jun 20;79(12):5880-6. doi: 10.1021/jo5008674. Epub 2014 Jun 6.
(2S,4R)- and (2S,4S)-perfluoro-tert-butyl 4-hydroxyproline were synthesized (as Fmoc-, Boc-, and free amino acids) in 2-5 steps. The key step of each synthesis was a Mitsunobu reaction with perfluoro-tert-butanol, which incorporated a perfluoro-tert-butyl group, with nine chemically equivalent fluorines. Both amino acids were incorporated in model α-helical and polyproline helix peptides. Each amino acid exhibited distinct conformational preferences, with (2S,4R)-perfluoro-tert-butyl 4-hydroxyproline promoting polyproline helix. Peptides containing these amino acids were sensitively detected by (19)F NMR, suggesting their use in probes and medicinal chemistry.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: N-Boc-N-methyl-D-Valinol | MMAD | Bis-PEG13-NHS ester | Propargyl-PEG5-t-butyl ester | VA-PAB-DMEA-PNU159682 | MAC glucuronide phenol-linked SN-38 | DBA-DM4 | DGN549 | Fmoc-N-amido-PEG3-propionic acid | N-(2-(3-Ethylphenoxy)ethyl)-4-Formylbenzamide | Fmoc-(4S)-4-Azido-D-Proline
Send Inquiry
Verification code
Inquiry Basket