webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

DNP-PEG4-NHS ester

  CAS No.: 858126-78-0   Cat No.: BADC-00692   Purity: ≥95% 4.5  

DNP-PEG4-NHS ester is a PEG linker containing a DNP moiety and an NHS ester terminal group. DNP is involved in biological applications such as involvement in ion transport across membranes. The NHS ester can react with primary amines to form stable amide bonds. The hydrophilic PEG linker increases the water solubility of the compound in aqueous media.

DNP-PEG4-NHS ester

Structure of 858126-78-0

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C21H28N4O12
Molecular Weight
528.47
Shipping
Room temperature
Shipping
Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
DNP-NH-PEG(4)-NHS; DNP-PEG4-NHS; 1-(2,4-Dinitrophenylamino)-3,6,9,12-tetraoxapentadecanoic acid succinimidyl ester; 2,5-dioxopyrrolidin-1-yl 1-((2,4-dinitrophenyl)amino)-3,6,9,12-tetraoxapentadecan-15-oate; 2,5-Pyrrolidinedione, 1-[3-[2-[2-[2-[2-[(2,4-dinitrophenyl)amino]ethoxy]ethoxy]ethoxy]ethoxy]-1-oxopropoxy]-; 1-({15-[(2,4-Dinitrophenyl)amino]-4,7,10,13-tetraoxapentadecan-1-oyl}oxy)-2,5-pyrrolidinedione
IUPAC Name
(2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[2-(2,4-dinitroanilino)ethoxy]ethoxy]ethoxy]ethoxy]propanoate
Canonical SMILES
C1CC(=O)N(C1=O)OC(=O)CCOCCOCCOCCOCCNC2=C(C=C(C=C2)[N+](=O)[O-])[N+](=O)[O-]
InChI
InChI=1S/C21H28N4O12/c26-19-3-4-20(27)23(19)37-21(28)5-7-33-9-11-35-13-14-36-12-10-34-8-6-22-17-2-1-16(24(29)30)15-18(17)25(31)32/h1-2,15,22H,3-14H2
InChIKey
OZBOCCBKQAMCSA-UHFFFAOYSA-N
Density
1.4±0.1 g/cm3
Solubility
Soluble in DMSO
Appearance
Yellow Liquid
Shipping
Room temperature
Storage
Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)
Boiling Point
686.3±65.0°C at 760 mmHg

DNP-PEG4-NHS ester, a versatile reagent in biochemistry and molecular biology, finds diverse applications. Explore four key applications of DNP-PEG4-NHS ester below:

Protein Labeling: Widely adopted for protein labeling, DNP-PEG4-NHS ester effectively attaches DNP (dinitrophenyl) groups to proteins for detection or purification purposes. This compound selectively reacts with amino groups on proteins, providing precise and simple labeling. Detection of DNP-labeled proteins can be achieved using anti-DNP antibodies, facilitating a range of biochemical assays with efficacy.

Antibody Production: In the realm of monoclonal and polyclonal antibody development, DNP-PEG4-NHS ester plays a pivotal role in creating antigen conjugates. Pairing DNP with a carrier protein stimulates robust immune responses, culminating in the generation of high-affinity anti-DNP antibodies. Such antibodies serve as invaluable assets for immunoassays and various research applications, elevating the arsenal of tools available to researchers.

Surface Functionalization: Delving into surface functionalization, DNP-PEG4-NHS ester emerges as a key player in enhancing microarrays and biosensors. By introducing DNP groups onto surfaces, researchers establish precise and reactive sites for subsequent biomolecule attachment. This sophisticated technique enables the development of highly specific and sensitive diagnostic platforms.

Studying Protein Interactions: Unlocking the realm of protein-protein and protein-ligand interactions, DNP-PEG4-NHS ester facilitates insightful studies. By tagging proteins with DNP, researchers can quantify interactions with other proteins or ligands using techniques like ELISA. This strategic approach aids in unraveling intricate molecular mechanisms and identifying potential drug targets, contributing to advancements in the field of protein interaction studies.

1.Binding mechanisms of PEGylated ligands reveal multiple effects of the PEG scaffold. Biochemistry
Das R, Baird E, Allen S, Baird B, Holowka D, Goldstein B
A series of synthetic ligands consisting of poly(ethylene glycol) (PEG), capped on one or both ends with the hapten 2,4-dinitrophenyl (DNP), were previously shown to be potent inhibitors of cellular activation in RBL mast cells stimulated by a multivalent antigen [Baird, E. J., Holowka, D., Coates, G. W., and Baird, B. (2003) Biochemistry 42, 12739-12748]. In this study, we systematically investigated the effect of increasing length of the PEG scaffold on the binding of these monovalent and bivalent ligands to anti-DNP IgE in solution. Our analysis reveals evidence for an energetically favorable interaction between two monovalent ligands bound to the same receptor, when the PEG molecular mass exceeds approximately 5 kDa. Additionally, for ligands with much higher molecular masses (>10 kDa PEG), the binding of a single ligand apparently leads to a steric exclusion of the second binding site by the bulky PEG scaffold. These results are further corroborated by data from an alternate fluorescence-based assay that we developed to quantify the capacity of these ligands to displace a small hapten bound to IgE. This new assay monitors the displacement of a small, receptor-bound hapten by a competitive monovalent ligand and thus quantifies the competitive inhibition offered by a monovalent ligand. We also show that, for bivalent ligands, inhibitory capacity is correlated with the capacity to form effective intramolecular cross-links with IgE.
2.Complement-mediated fragmentation of soluble and insoluble immune complexes containing porcine anti-DNP antibodies
Miklós K, Kulics J, Franĕk F, Füst G, Gergely J
Complement-mediated release of soluble immune complexes and immune precipitates containing DNP-PSA and precipitating or non-precipitating porcine anti-DNP antibodies was studied. A decrease in the average size of soluble immune complexes indicating their fragmentation was observed during incubation in excess human serum, the extent of the complex release was found to be in direct proportion to the time of incubation. The effect was complement-dependent. In the second part of the study, complement-dependent solubilization of the immune precipitates of the precipitating antibody preparation was compared to the solubilization of the precipitates of the non-precipitating antibody formed in the presence of PEG. Although, both types of precipitates activated complement in about the same extent, complexes of non-precipitating antibody were solubilized much slower than those of the precipitating one. As avidity of both antibody preparations to the antigen was high, the observed differences in the rate of the complex solubilization probably reflected differences in the structure of the two types of complexes.
3.Suppression of reaginic antibodies with modified allergens. IV. Induction of suppressor T cells by conjugates of polyethylene glycol (PEG) and monomethoxy PEG with ovalbumin
Lee WY, Sehon AH, Akerblom E
Administration of multiple injections of conjugates of ovalbumin (OA) and polyethylene glycol (PEG) or its monomethoxy derivative (mPEG) into mice which had been sensitized with 2,4-dinitrophenylated OA (DNP3-OA) abrogated both the anti-OA and anti-DNP IgE responses, in spite of additional injections of the sensitizing dose of DNP3-OA in the presence of A1(OH)3. Treatment of mice with OA-PEG in A1(OH)3 stimulated preferentially helper T cells, whereas injection of mice with OA-PEG in the absence of adjuvant elicited predominantly suppressor T cells. The unresponsive state of mice which had been treated 21 days earlier with OA-PEG could not be broken by the transfer of normal spleen cells and an additional sensitizing dose of DNP3-OA. Transfer of spleen cells from tolerized animals to normal mice dampened the capacity of the latter to mount both anti-DNP and anti-OA IgE responses; however, the suppressive effect of these cells was eliminated by treatment of the normal recipients with cyclophosphamide, which is a procedure known to inactive suppressor T cells, and hence it may be concluded that this effect was not due to the carryover of the tolerogen with the transferred cells. All these results provide strong support for the conclusion that the suppressor cells induced by the treatment of mice with OA-PEG and OA-mPEG conjugates belonged to a T cell subpopulation, and that the B cells of these mice were devoid of suppressive activity.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: 4-((S)-2-((S)-2-amino-3-methylbutanamido)-5-ureidopentanamido)benzyl 2-(pyridin-2-yldisulfanyl)ethylcarbamate | Ald-Ph-amido-PEG1-C2-Pfp ester | DNP-PEG4-NHS ester
Send Inquiry
Verification code
Inquiry Basket