webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Bromoacetamido-PEG4-NHS ester

  CAS No.: 1260139-70-5   Cat No.: BADC-00572   Purity: >95% 4.5  

Bromoacetamido-PEG4-NHS ester is a PEG derivative containing a bromide group and an NHS ester. The bromide (Br) is a very good leaving group for nucleophilic substitution reactions. The NHS ester can be used to label the primary amines (-NH2) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. Bromoacetamido-PEG4-NHS ester is a PEGn linker for antibody-drug-conjugation (ADC).

Bromoacetamido-PEG4-NHS ester

Structure of 1260139-70-5

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C17H27BrN2O9
Molecular Weight
483.31
Shipping
Room temperature, or blue ice upon request.
Shipping
Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Bromoacetamido-PEG4-C2-NHS ester; BrCH2CONH-PEG4-NHS ester; 2,5-dioxopyrrolidin-1-yl 1-bromo-2-oxo-6,9,12,15-tetraoxa-3-azaoctadecan-18-oate; 2,5-dioxopyrrolidin-1-yl 1-(2-bromoacetamido)-3,6,9,12-tetraoxapentadecan-15-oate; 3-[2-(2-{2-[2-(2-bromo-acetylamino)-ethoxy]-ethoxy}-ethoxy)-ethoxy]-propionic acid 2,5-dioxo-pyrrolidin-1-yl ester; 4,7,10,13-Tetraoxa-16-azaoctadecanoic acid, 18-bromo-17-oxo-, 2,5-dioxo-1-pyrrolidinyl ester; Acetamide, 2-bromo-N-[15-[(2,5-dioxo-1-pyrrolidinyl)oxy]-15-oxo-3,6,9,12-tetraoxapentadec-1-yl]-; 2-Bromo-N-{15-[(2,5-dioxo-1-pyrrolidinyl)oxy]-15-oxo-3,6,9,12-tetraoxapentadec-1-yl}acetamide
IUPAC Name
(2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[2-[(2-bromoacetyl)amino]ethoxy]ethoxy]ethoxy]ethoxy]propanoate
Canonical SMILES
C1CC(=O)N(C1=O)OC(=O)CCOCCOCCOCCOCCNC(=O)CBr
InChI
InChI=1S/C17H27BrN2O9/c18-13-14(21)19-4-6-26-8-10-28-12-11-27-9-7-25-5-3-17(24)29-20-15(22)1-2-16(20)23/h1-13H2,(H,19,21)
InChIKey
BONNYNBXMCRXBJ-UHFFFAOYSA-N
Density
1.4±0.1 g/cm3
Solubility
Soluble in DMSO
Appearance
Solid powder
Shipping
Room temperature, or blue ice upon request.
Storage
Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)
1.Antiviral Lipopeptide-Cell Membrane Interaction Is Influenced by PEG Linker Length
Augusto MT, Hollmann A, Porotto M, Moscona A, Santos NC.
A set of lipopeptides was recently reported for their broad-spectrum antiviral activity against viruses belonging to the Paramyxoviridae family, including human parainfluenza virus type 3 and Nipah virus. Among them, the peptide with a 24-unit PEG linker connecting it to a cholesterol moiety (VG-PEG24-Chol) was found to be the best membrane fusion inhibitory peptide. Here, we evaluated the interaction of the same set of peptides with biomembrane model systems and isolated human peripheral blood mononuclear cells (PBMC). VG-PEG24-Chol showed the highest insertion rate and it was among the peptides that induced a larger change on the surface pressure of cholesterol rich membranes. This peptide also displayed a high affinity towards PBMC membranes. These data provide new information about the dynamics of peptide-membrane interactions of a specific group of antiviral peptides, known for their potential as multipotent paramyxovirus antivirals.
2.Gold nanoparticle surface functionalization: mixed monolayer versus hetero bifunctional peg linker
Harrison E, Coulter JA, Dixon D.
To create a clinically relevant gold nanoparticle (AuNP) treatment, the surface must be functionalized with multiple ligands such as drugs, antifouling agents and targeting moieties. However, attaching several ligands of differing chemistries and lengths, while ensuring they all retain their biological functionality remains a challenge. This review compares the two most widely employed methods of surface cofunctionalization, namely mixed monolayers and hetero-bifunctional linkers. While there are numerous in vitro studies successfully utilizing both surface arrangements, there is little consensus regarding their relative merits. Animal and preclinical studies have demonstrated the effectiveness of mixed monolayer functionalization and while some promising in vitro results have been reported for PEG linker capped AuNPs, any potential benefits of the approach are not yet fully understood.
3.Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes
Sano K, Nakajima T, Miyazaki K, Ohuchi Y, Ikegami T, Choyke PL, Kobayashi H.
The ability to switch optical imaging probes from the quenched (off) to the active state (on) has greatly improved target to background ratios. The optimal activation efficiency of an optical probe depends on complete quenching before activation and complete dequenching after activation. For instance, monoclonal antibody-indocyanine green (mAb-ICG) conjugates, which are promising agents for clinical translation, are normally quenched, but can be activated when bound to a cell surface receptor and internalized. However, the small fraction of commonly used ICG derivative (ICG-Sulfo-OSu) can bind noncovalently to its mAb and is, thus, gradually released from the mAb leading to relatively high background signal especially in the liver and the abdomen. In this study, we re-engineered a mAb-ICG conjugate, (Panitumumab-ICG) using bifunctional ICG derivatives (ICG-PEG4-Sulfo-OSu and ICG-PEG8-Sulfo-OSu) with short polyethylene glycol (PEG) linkers. Higher covalent binding (70-86%) was observed using the bifunctional ICG with short PEG linkers resulting in less in vivo noncovalent dissociation. Panitumumab-ICG conjugates with short PEG linkers were able to detect human epidermal growth factor receptor 1 (EGFR)-positive tumors with high tumor-to-background ratios (15.8 and 6.9 for EGFR positive tumor-to-negative tumor and tumor-to-liver ratios, respectively, at 3 d postinjection).

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: SMPT | Mal-PEG2-Val-Cit-PABA | BCN-PEG4-NHS ester | Gly-Gly-Phe-OH | Seco-Duocarmycin SA | BCN-endo-PEG2-maleimide | PTAD-PEG4-N3 | PTAD-PEG4-alkyne | Mal-PEG2-NHS ester | Paclitaxel | Bromoacetamido-PEG4-NHS ester
Send Inquiry
Verification code
Inquiry Basket