webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

(2S,4S)-H-L-Pro(4-N3)-OH hydrochloride

  CAS No.:   Cat No.: BADC-01896 4.5  

(2S,4S)-H-L-Pro(4-N3)-OH hydrochloride is a stereospecific proline-based azide ADC linker intermediate facilitating selective click chemistry conjugation for targeted payload delivery in antibody-drug conjugates. Keywords: ADC linker, proline derivative, azide linker, bioorthogonal chemistry, drug delivery.

(2S,4S)-H-L-Pro(4-N3)-OH hydrochloride

Structure of

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C5H9ClN4O2
Molecular Weight
192.60

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
IUPAC Name
(2S,4S)-4-azidopyrrolidine-2-carboxylic acid;hydrochloride
Canonical SMILES
C1C(CNC1C(=O)O)N=[N+]=[N-].Cl
InChI
InChI=1S/C5H8N4O2.ClH/c6-9-8-3-1-4(5(10)11)7-2-3;/h3-4,7H,1-2H2,(H,10,11);1H/t3-,4-;/m0./s1
InChIKey
BVURXEMVHARMIF-MMALYQPHSA-N

(2S,4S)-H-L-Pro(4-N3)-OH hydrochloride, a proline derivative commonly utilized in biochemical research and drug development, serves as a cornerstone in various applications explored with high perplexity and burstiness.

Peptide Synthesis: Serving as a fundamental component in peptide and peptidomimetic synthesis, (2S,4S)-H-L-Pro(4-N3)-OH hydrochloride's azide group allows for versatile functionalization via click chemistry, facilitating in-depth studies of protein-protein interactions. Researchers harness this compound to craft precise peptide sequences tailored for diverse biochemical assays, unlocking new avenues in peptide-based research.

Protein Labeling: The exceptional azide functionality of (2S,4S)-H-L-Pro(4-N3)-OH hydrochloride plays a crucial role in bioorthogonal chemistry for protein labeling. Incorporating the azide-modified proline into peptides enables scientists to attach fluorescent dyes or other probes through click reactions, enhancing investigations into protein dynamics and interactions within live cellular environments.

Drug Development: With its potential in designing novel drug candidates, (2S,4S)-H-L-Pro(4-N3)-OH hydrochloride, featuring the azide group, opens avenues for creating proline-rich peptidomimetics with enhanced pharmacokinetic properties. Researchers can evaluate the biological activity of these compounds to unveil promising therapeutic agents, heralding advancements in drug discovery and development.

Structural Biology: Enriching studies in structural biology, (2S,4S)-H-L-Pro(4-N3)-OH hydrochloride finds application in NMR and crystallographic research. Incorporation of this proline derivative into peptides aids in structural determination by providing specific labeling sites, facilitating the elucidation of three-dimensional protein structures and complexes. This knowledge is pivotal in deciphering protein function and strategizing targeted interventions for therapeutic purposes.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: H-L-Orn(N3)-OH hydrochloride | DBCO-PEG4-Ahx-DM1 | DBCO-PEG4-vc-PAB-Ahx-DM1 | MP-PEG8-VA-PABC | N3-PEG3-VC-PAB-MMAE | Gly3-MMAF | L-4-trans-Hydroxyproline methyl ester hydrochloride | (2S,4S)-H-L-Pro(4-N3)-OH hydrochloride | N-Boc-cis-4-Hydroxy-D-proline
Send Inquiry
Verification code
Inquiry Basket