webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

VCP-Eribulin

  CAS No.: 2130869-17-7   Cat No.: BADC-00660 4.5  

VCP-Eribulin consists the ADCs linker (VCP) and Eribulin. Eribulin is a mechanistically unique microtubule inhibitor for cancer. VCP-Eribulin is an Eribulin-based drug for antibody conjugates.

VCP-Eribulin

Structure of 2130869-17-7

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Cytotoxin with Linker
Molecular Formula
C59H86N6O16
Molecular Weight
1135.34
Shipping
-20°C (International: -20°C)

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
IUPAC Name
[4-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-5-(carbamoylamino)pentanoyl]amino]phenyl]methyl N-[(2S)-2-hydroxy-3-[(1S,3S,6S,9S,12S,14R,16R,18S,20R,21R,22S,26R,29S,31R,32S,33R,35R,36S)-21-methoxy-14-methyl-8,15-dimethylidene-24-oxo-2,19,30,34,37,39,40,41-octaoxanonacyclo[24.9.2.13,32.13,33.16,9.112,16.018,22.029,36.031,35]hentetracontan-20-yl]propyl]carbamate
Canonical SMILES
C=C1C[C@@]2([H])O[C@@]1([H])CC[C@]3([H])O[C@](C([C@H](C)C3)=C)([H])C[C@@]4([H])[C@]([C@@H](OC)[C@@H](C[C@H](O)CNC(OCC5=CC=C(NC([C@H](CCCNC(N)=O)NC([C@H](C(C)C)N)=O)=O)C=C5)=O)O4)([H])CC(C[C@]6([H])O[C@]7([H])[C@]8([H])O[C@@]9(O[C@@]%10([H])[C@@](O[C@]8([H])[C@@]%10([H])O[C@@]7([H])CC6)([H])C9)CC2)=O
InChI
InChI=1S/C59H86N6O16/c1-29(2)48(60)56(69)65-41(8-7-19-62-57(61)70)55(68)64-34-11-9-33(10-12-34)28-73-58(71)63-27-36(67)24-46-49(72-6)40-23-35(66)22-38-14-16-43-50(76-38)54-53-52(78-43)51-47(79-53)26-59(80-51,81-54)18-17-39-21-31(4)42(74-39)15-13-37-20-30(3)32(5)44(75-37)25-45(40)77-46/h9-12,29-30,36-54,67H,4-5,7-8,13-28,60H2,1-3,6H3,(H,63,71)(H,64,68)(H,65,69)(H3,61,62,70)/t30-,36+,37+,38-,39+,40+,41+,42+,43+,44-,45+,46-,47-,48+,49-,50+,51+,52+,53-,54+,59+/m1/s1
Shipping
-20°C (International: -20°C)
1.Eribulin induces irreversible mitotic blockade: implications of cell-based pharmacodynamics for in vivo efficacy under intermittent dosing conditions
Towle MJ, Salvato KA, Wels BF, Aalfs KK, Zheng W, Seletsky BM, Zhu X, Lewis BM, Kishi Y, Yu MJ, Littlefield BA
Eribulin (E7389), a mechanistically unique microtubule inhibitor in phase III clinical trials for cancer, exhibits superior efficacy in vivo relative to the more potent compound ER-076349, a fact not explained by different pharmacokinetic properties. A cell-based pharmacodynamic explanation was suggested by observations that mitotic blockade induced by eribulin, but not ER-076349, is irreversible as measured by a flow cytometric mitotic block reversibility assay employing full dose/response treatment. Cell viability 5 days after drug washout established relationships between mitotic block reversibility and long-term cell survival. Similar results occurred in U937, Jurkat, HL-60, and HeLa cells, ruling out cell type-specific effects. Studies with other tubulin agents suggest that mitotic block reversibility is a quantifiable, compound-specific characteristic of antimitotic agents in general. Bcl-2 phosphorylation patterns parallel eribulin and ER-076349 mitotic block reversibility patterns, suggesting persistent Bcl-2 phosphorylation contributes to long-term cell-viability loss after eribulin's irreversible blockade. Drug uptake and washout/retention studies show that [3H]eribulin accumulates to lower intracellular levels than [3H]ER-076349, yet is retained longer and at higher levels. Similar findings occurred with irreversible vincristine and reversible vinblastine, pointing to persistent cellular retention as a component of irreversibility. Our results suggest that eribulin's in vivo superiority derives from its ability to induce irreversible mitotic blockade, which appears related to persistent drug retention and sustained Bcl-2 phosphorylation. More broadly, our results suggest that compound-specific reversibility characteristics of antimitotic agents contribute to interactions between cell-based pharmacodynamics and in vivo pharmacokinetics that define antitumor efficacy under intermittent dosing conditions.
2.Eribulin-based antibody-drug conjugates and methods of use
Earl F Albone, et al.
Linker toxins and antibody-drug conjugates that bind to human oncology antigen targets such as folate receptor alpha and/or provide anti-tubulin drug activity are disclosed. The linker toxins and antibody-drug conjugates comprise an eribulin drug moiety and can be internalized into target antigen-expressing cells. The disclosure further relates to methods and compositions for use in the treatment of cancer by administering the antibody-drug conjugates provided herein.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Payload Development Biological Payload ADC Linker–Payload Conjugation ADC Linker Development Chemical Payload Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Maytansine and Its Analogues Linkers - A Crucial Factor in Antibody–Drug Conjugates Cytotoxic Agents Used in Antibody–Drug Conjugates Exatecan Mesylate in ADCs: A New Topo I Inhibitor What is Calicheamicin? What is Monomethyl Auristatin E (MMAE)? What is Monomethyl Auristatin F (MMAF)? What is Pyrrolobenzodiazepine (PBD)? Antiviral Potential of Thapsigargin in COVID-19 Research In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: DM3 | Maytansinol | DBM-MMAE | SPDP-PEG12-acid | Azido-PEG6-amine | SPDP-PEG36-NHS ester | Azido-PEG3-NHS ester | Mal-PEG4-PFP | Azido-PEG8-NHS ester | Azido-PEG6-NHS ester | VCP-Eribulin
Send Inquiry
Verification code
Inquiry Basket