1. Pcp1/pericentrin controls the SPB number in fission yeast meiosis and ploidy homeostasis
Zhaodi Jiang, Xiangwei He, Qian Zhu J Cell Biol . 2022 Jan 3;221(1):e202104099. doi: 10.1083/jcb.202104099.
During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.
2. Viral susceptibility, transfection and growth of SPB--a fish neural progenitor cell line from the brain of snubnose pompano, Trachinotus blochii (Lacépède)
C-C Ku, C-S Wang, C-M Wen J Fish Dis . 2013 Jul;36(7):657-67. doi: 10.1111/jfd.12067.
This study investigates the susceptibilities of the SPB cell line to fish viruses including giant seaperch iridovirus (GSIV-K1), red sea bream iridovirus (RSIV-Ku), grouper nervous necrosis virus (GNNV-K1), chum salmon reovirus (CSV) and eel herpesvirus (HVA). GSIV-K1, RSIV-Ku and CSV replicated well in SPB cells, with a significant cytopathic effect and virus production. However, the cells were HVA and GNNV refractory. To examine the ability of SPB cells to stably express foreign protein, expression vectors encoding GNNV B1 and B2 fused to enhanced green fluorescent protein (EGFP) and GSIV ORF35L fused to DsRed were constructed and introduced by transfection into SPB cells. Stable transfectants displayed different morphologies compared with SPB and with each other. EGFP-B1 was predominantly localized in the nuclei, EFPF-B2 was distributed throughout the cytoplasm and nucleus, and granular 35L-DsRed was localized with secreted vesicles. The expression of EFPF-B2 in SPB cells produced blebs on the surface, but the cells showing stable expression of EGFP, EGFP-B1 or 35L-DsRed showed normal morphologies. Results show the SPB cells and the transfected cells grow well at temperatures between 20 and 35 °C and with serum-dependent growth. SPB cells are suitable for studies on foreign protein expression and virology.
3. Centrosome Remodelling in Evolution
Daisuke Ito, Mónica Bettencourt-Dias Cells . 2018 Jul 6;7(7):71. doi: 10.3390/cells7070071.
The centrosome is the major microtubule organizing centre (MTOC) in animal cells. The canonical centrosome is composed of two centrioles surrounded by a pericentriolar matrix (PCM). In contrast, yeasts and amoebozoa have lost centrioles and possess acentriolar centrosomes-called the spindle pole body (SPB) and the nucleus-associated body (NAB), respectively. Despite the difference in their structures, centriolar centrosomes and SPBs not only share components but also common biogenesis regulators. In this review, we focus on the SPB and speculate how its structures evolved from the ancestral centrosome. Phylogenetic distribution of molecular components suggests that yeasts gained specific SPB components upon loss of centrioles but maintained PCM components associated with the structure. It is possible that the PCM structure remained even after centrosome remodelling due to its indispensable function to nucleate microtubules. We propose that the yeast SPB has been formed by a step-wise process; (1) an SPB-like precursor structure appeared on the ancestral centriolar centrosome; (2) it interacted with the PCM and the nuclear envelope; and (3) it replaced the roles of centrioles. Acentriolar centrosomes should continue to be a great model to understand how centrosomes evolved and how centrosome biogenesis is regulated.