webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

N-Bromoacetyl-β-alanine

  CAS No.: 89520-11-6   Cat No.: BADC-01190   Purity: ≥95% 4.5  

N-Bromoacetyl-β-alanine is an alkyl chain-based PROTAC linker that can be used in the synthesis of PROTACs. N-Bromoacetyl-β-alanine is also a cleavable ADC linker used in the synthesis of antibody-drug conjugates (ADCs).

N-Bromoacetyl-β-alanine

Structure of 89520-11-6

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C5H8BrNO3
Molecular Weight
210.03
Shipping
-20°C (International: -20°C)
Storage
Store at -20 °C, keep in dry and avoid sunlight.

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
3-(2-Bromoacetamido)propanoic acid; N-(Bromoacetyl)-beta-alanine
IUPAC Name
3-[(2-bromoacetyl)amino]propanoic acid
Canonical SMILES
C(CNC(=O)CBr)C(=O)O
InChI
InChI=1S/C5H8BrNO3/c6-3-4(8)7-2-1-5(9)10/h1-3H2,(H,7,8)(H,9,10)
InChIKey
ULKDIPSSLZFIQU-UHFFFAOYSA-N
Density
1.682g/cm3
Solubility
10 mm in DMSO
Flash Point
215.9°C
Index Of Refraction
1.523
PSA
69.89000
Appearance
Pale yellow semi-solid
Shelf Life
0-4°C for short term (days to weeks), or -20°C for long term (months).
Shipping
-20°C (International: -20°C)
Storage
Store at -20 °C, keep in dry and avoid sunlight.
Boiling Point
433.4°C at 760 mmHg
1. Synthesis of N alpha-(tert-butoxycarbonyl)-N epsilon-[N-(bromoacetyl)-beta-alanyl]-L-lysine: its use in peptide synthesis for placing a bromoacetyl cross-linking function at any desired sequence position
J K Inman, P F Highet, N Kolodny, F A Robey Bioconjug Chem. 1991 Nov-Dec;2(6):458-63. doi: 10.1021/bc00012a014.
A new amino acid derivative, N alpha-(tert-butoxycarbonyl)-N epsilon-[N-(bromoacetyl)-beta-alanyl]-L-lysine (BBAL), has been synthesized as a reagent to be used in solid-phase peptide synthesis for introducing a side-chain bromoacetyl group at any desired position in a peptide sequence. The bromoacetyl group subsequently serves as a sulfhydryl-selective cross-linking function for the preparation of cyclic peptides, peptide conjugates, and polymers. BBAL is synthesized by condensation of N-bromoacetyl-beta-alanine with N alpha-Boc-L-lysine and is a white powder which is readily stored, weighed, and used with a peptide synthesizer, programmed for N alpha-Boc amino acid derivatives. BBAL residues are stable to final HF deprotection/cleavage. BBAL peptides can be directly coupled to other molecules or surfaces which possess free sulfhydryl groups by forming stable thioether linkages. Peptides containing both BBAL and cysteine residues can be self-coupled to produce either cyclic molecules or linear peptide polymers, also linked through thioether bonds. Products made with BBAL peptides may be characterized by amino acid analysis of acid hydrolyzates by quantification of beta-alanine, which separates from natural amino acids in suitable analytical systems. Where sulfhydryl groups on coupling partners arise from cysteine residues, S-(carboxymethyl)cysteine in acid hydrolyzates may also be assayed for this purpose. Examples are given of the use of BBAL in preparing peptide polymers and a peptide conjugate with bovine albumin to serve as immunogens or model vaccine components.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: SC-VC-PAB-MMAE | DBCO-PEG4-HyNic | N-Bromoacetyl-β-alanine
Send Inquiry
Verification code
Inquiry Basket