webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

2,5-dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate

  CAS No.: 1193111-73-7   Cat No.: BADC-00476   Purity: ≥98% 4.5  

Dimethylamine-SPDB is a small molecule biopharmaceutical compound. It inhibits viral replication and pathogenesis by targeting enzymes, demonstrating its prowess as a powerful antagonist of viral infections, including influenza and hepatitis. Furthermore, it holds great promise in the field of oncology, fighting malignant tumors by elastically destroying the growth and proliferation of malignant cells.

2,5-dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate

Structure of 1193111-73-7

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C15H19N3O4S2
Molecular Weight
369.46
Shipping
Room temperature

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
(2,5-dioxopyrrolidin-1-yl) 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate
IUPAC Name
Canonical SMILES
CN(C)C(CCSSC1=CC=CC=N1)C(=O)ON2C(=O)CCC2=O
InChI
InChI=1S/C15H19N3O4S2/c1-17(2)11(8-10-23-24-12-5-3-4-9-16-12)15(21)22-18-13(19)6-7-14(18)20/h3-5,9,11H,6-8,10H2,1-2H3
InChIKey
DVABDPJDROOSBH-UHFFFAOYSA-N
Appearance
Soild powder
Shipping
Room temperature

2,5-Dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate is primarily utilized in the field of organic chemistry for the formation of peptide-bond analogs. This compound acts as a coupling reagent, facilitating the synthesis of peptides by forming amide bonds between amino acids. The presence of its disulfide linkage and dimethylamino moiety enhances its reactivity and selectivity in peptide synthesis, making it a valuable tool for chemists working to create complex biomolecules. Its application in peptide synthesis is critical for the development of therapeutic peptides and research peptides that have potential uses in treating various diseases and understanding biological processes.

Another significant application of 2,5-Dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate is in the synthesis of bioconjugates. This compound’s unique structural features, especially the reactive disulfide bond, enable it to link bioactive molecules, such as enzymes or antibodies, to other functional entities, such as drug molecules or imaging agents. These bioconjugates are crucial in targeted drug delivery systems and diagnostic tools, allowing for precise targeting of therapeutic agents to specific cells or tissues, thereby improving efficacy and reducing side effects.

In the realm of medicinal chemistry, 2,5-Dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate is employed in the development of prodrugs. The compound’s disulfide bond can be strategically cleaved in the reductive environment inside cells, releasing the active drug. This targeted activation mechanism is particularly important for developing therapies with improved pharmacokinetic and pharmacodynamic profiles. The design of prodrugs using this compound helps in achieving better absorption, distribution, metabolism, and excretion properties, aligned with the specific therapeutic needs.

Finally, 2,5-Dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate is used in the field of chemical biology to create probes for studying biological systems. These probes can interact with specific proteins or nucleic acids, providing insights into cellular mechanisms and pathways. The compound’s potential to form stable yet selectively cleavable linkages makes it ideal for designing probes that can be activated or deactivated in response to specific cellular conditions, facilitating a better understanding of cellular dynamics, protein interactions, and intracellular signaling. Such probes are invaluable in basic research, drug discovery, and the development of new therapeutic strategies.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: Mal-L-Dap(Boc)-OH | sulfo-LC-SPDP | N-(2-azidoacetyl)glycine DCHA salt | 2,5-dioxopyrrolidin-1-yl 2-(2-(2-(2-(2,5-dioxo-2H-pyrrol-1(5H)-yl)ethoxy)ethoxy)ethoxy)acetate | m-PEG3-NHS ester | β-D-tetraacetylgalactopyranoside-PEG1-N3 | NHS-PEG(5)-CO-OBzl | Propargyl-PEG1-SS-PEG1-PFP ester | 4-Formyl-N-(2-(4-Isopropylphenoxy)ethyl)benzamide | 4-Formyl-N-(2-Phenoxyethyl)benzamide | 2,5-dioxopyrrolidin-1-yl 2-(dimethylamino)-4-(pyridin-2-yldisulfanyl)butanoate
Send Inquiry
Verification code
Inquiry Basket