webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

ethyl azetidine-3-carboxylate hydrochloride

  CAS No.: 405090-31-5   Cat No.: BADC-01936   Purity: >95% 4.5  

ethyl azetidine-3-carboxylate hydrochloride is a versatile small-molecule scaffold for constrained linker development in ADCs and bioactive conjugates.

ethyl azetidine-3-carboxylate hydrochloride

Structure of 405090-31-5

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C6H12ClNO2
Molecular Weight
165.62

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
Ethyl 3-azetidin-carboxylate HCl; 3-Azetidinecarboxylic acid, ethyl ester, hydrochloride
IUPAC Name
ethyl azetidine-3-carboxylate;hydrochloride
Canonical SMILES
CCOC(=O)C1CNC1.Cl
InChI
InChI=1S/C6H11NO2.ClH/c1-2-9-6(8)5-3-7-4-5;/h5,7H,2-4H2,1H3;1H
InChIKey
RZQFZRLGHCCPGG-UHFFFAOYSA-N

Ethyl azetidine-3-carboxylate hydrochloride represents an intriguing compound in the realm of medicinal chemistry, notable for its role both as a non-cleavable linker in antibody-drug conjugates (ADCs) and as an alkyl chain-based Proteolysis Targeting Chimera (PROTAC) linker. These dual functionalities underscore its versatility and potential impact in drug discovery and development. The hydrochloride salt form of this compound enhances its solubility in aqueous environments, facilitating its integration into various pharmaceutical formulations. The azetidine ring, a four-membered nitrogen-containing heterocycle, is relatively uncommon in drug design but imparts unique chemical properties that can be exploited for specific binding and stability profiles in therapeutic agents.

In the context of ADCs, ethyl azetidine-3-carboxylate hydrochloride serves as a pivotal component that connects the antibody to the drug payload. Its non-cleavable nature ensures that the cytotoxic drug remains securely attached to its targeting moiety until the ADC reaches the lysosome of the target cell. This stability is crucial for reducing off-target effects and optimizing the therapeutic index of ADCs, thereby enhancing their efficacy and safety profile. By ensuring that the cytotoxic agent is only released within the target cell, this linker technology contributes to the precision of ADCs, making them potent tools in oncology for delivering chemotherapy directly to cancerous cells while sparing healthy tissue.

Meanwhile, in the emerging field of PROTACs, ethyl azetidine-3-carboxylate hydrochloride acts as a linker that bridges the target protein and an E3 ubiquitin ligase, facilitating the degradation of the target protein. PROTACs have revolutionized drug discovery by offering a means to degrade proteins that were previously considered “undruggable” by traditional small-molecule inhibitors. The flexibility and appropriate length of the alkyl chain in this linker allow for effective positioning of both the ligands involved in the PROTAC mechanism, ensuring robust ubiquitination and subsequent proteasomal degradation of the target protein.

The impact of ethyl azetidine-3-carboxylate hydrochloride in drug discovery is marked by its ability to enhance the selectivity and efficacy of therapeutic agents. By enabling targeted delivery and selective protein degradation, this compound plays a crucial role in advancing personalized medicine approaches, particularly in cancer treatment. Its application across these two cutting-edge modalities underscores a broader trend in drug development towards multifunctional molecules that can address complex biological challenges with precision and efficacy. As research progresses, the scope of ethyl azetidine-3-carboxylate hydrochloride in drug development is expected to expand.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: Me-Tet-PEG4-COOH | Cyclooctyne-O-amido-PEG4-NHS ester | Propargyl-PEG5-amine | ethyl azetidine-3-carboxylate hydrochloride
Send Inquiry
Verification code
Inquiry Basket