webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

4-((S)-2-((S)-2-amino-3-methylbutanamido)-5-ureidopentanamido)benzyl 2-(pyridin-2-yldisulfanyl)ethylcarbamate

  CAS No.: 1610769-13-5   Cat No.: BADC-00489   Purity: ≥98% 4.5  

PDP-C1-Ph-Val-Cit is a small molecule compound. It blocks specific enzymes involved in harmful processes of tumor expansion and metastasis, effectively inhibiting cancer progression.

4-((S)-2-((S)-2-amino-3-methylbutanamido)-5-ureidopentanamido)benzyl 2-(pyridin-2-yldisulfanyl)ethylcarbamate

Structure of 1610769-13-5

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C26H37N7O5S2
Molecular Weight
591.75
Shipping
Room temperature

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
[4-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-5-(carbamoylamino)pentanoyl]amino]phenyl]methyl N-[2-(pyridin-2-yldisulfanyl)ethyl]carbamate;
IUPAC Name
Canonical SMILES
CC(C)C(C(=O)NC(CCCNC(=O)N)C(=O)NC1=CC=C(C=C1)COC(=O)NCCSSC2=CC=CC=N2)N
InChI
InChI=1S/C26H37N7O5S2/c1-17(2)22(27)24(35)33-20(6-5-13-30-25(28)36)23(34)32-19-10-8-18(9-11-19)16-38-26(37)31-14-15-39-40-21-7-3-4-12-29-21/h3-4,7-12,17,20,22H,5-6,13-16,27H2,1-2H3,(H,31,37)(H,32,34)(H,33,35)(H3,28,30,36)/t20-,22-/m0/s1
InChIKey
YMBCOKQFJNGLRV-UNMCSNQZSA-N
Appearance
Soild powder
Shipping
Room temperature

4-((S)-2-((S)-2-amino-3-methylbutanamido)-5-ureidopentanamido)benzyl 2-(pyridin-2-yldisulfanyl)ethylcarbamate is a synthetic molecule with versatile applications in biomedical research and pharmaceutical development. Here are some key applications of this compound:

Cancer Research: This compound can be used to study the mechanisms of cancer cell proliferation and survival. Its unique structure allows it to interact with specific proteins involved in cancer pathways. Researchers can use it to develop targeted therapies aimed at inhibiting cancer cell growth and inducing apoptosis.

Drug Delivery Systems: This molecule can be employed in the design of advanced drug delivery systems. Its chemical properties enable it to act as a carrier for therapeutic agents, improving their stability and bioavailability. This application is crucial for enhancing the efficiency of drug delivery and minimizing side effects.

Enzyme Inhibition Studies: The compound is a valuable tool in enzyme inhibition research. By interacting with key enzymes, it helps scientists understand enzyme functions and regulatory mechanisms. This information is vital for designing drugs that can selectively inhibit or modulate enzyme activity in various diseases.

Protein Modification: This molecule can be used for site-specific protein modification in biochemical research. Its reactive groups enable it to form covalent bonds with target proteins, tagging them for further analysis. This application is essential for studying protein-protein interactions and understanding protein function.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: 4-((S)-2-((S)-2-amino-3-methylbutanamido)-5-ureidopentanamido)benzyl 2-(pyridin-2-yldisulfanyl)ethylcarbamate
Send Inquiry
Verification code
Inquiry Basket