webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Nα-Azido-Nβ-Boc-L-2,3-diaminopropionic acid

  CAS No.: 1932432-15-9   Cat No.: BADC-01985   Purity: ≥ 99% (HPLC) 4.5  

Nα-Azido-Nβ-Boc-L-2,3-diaminopropionic acid is a protected azido amino acid linker for precise site-specific ADC conjugation via bioorthogonal click reactions, enhancing targeting and stability.

Nα-Azido-Nβ-Boc-L-2,3-diaminopropionic acid

Structure of 1932432-15-9

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C8H14N4O4
Molecular Weight
230.20
Shipping
Store at 2-8 °C

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
(S)-2-azido-3-(Boc-amino)propionic acid; N3-L-Dap(Boc)-OH; 2-Azido-3-t-butyloxycarbonylamino-propanoic acid (s)
IUPAC Name
(2S)-2-azido-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid
Canonical SMILES
CC(C)(C)OC(=O)NCC(C(=O)O)N=[N+]=[N-]
InChI
InChI=1S/C8H14N4O4/c1-8(2,3)16-7(15)10-4-5(6(13)14)11-12-9/h5H,4H2,1-3H3,(H,10,15)(H,13,14)/t5-/m0/s1
InChIKey
IVADUQQDYTXXQS-YFKPBYRVSA-N
Melting Point
92-97°C
Appearance
White crystalline powder
Storage
Store at 2-8 °C
1. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus
Federico C Beasley, Johnson Cheung, David E Heinrichs BMC Microbiol. 2011 Sep 9;11:199. doi: 10.1186/1471-2180-11-199.
Background: Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. Results: Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. Conclusions: Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell.
2. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor
Marek J Kobylarz, Jason C Grigg, Shin-ichi J Takayama, Dushyant K Rai, David E Heinrichs, Michael E P Murphy Chem Biol. 2014 Mar 20;21(3):379-88. doi: 10.1016/j.chembiol.2013.12.011. Epub 2014 Jan 30.
L-2,3-diaminopropionic acid (L-Dap) is an amino acid that is a precursor of antibiotics and staphyloferrin B a siderophore produced by Staphylococcus aureus. SbnA and SbnB are encoded by the staphyloferrin B biosynthetic gene cluster and are implicated in L-Dap biosynthesis. We demonstrate here that SbnA uses PLP and substrates O-phospho-L-serine and L-glutamate to produce a metabolite N-(1-amino-1-carboxyl-2-ethyl)-glutamic acid (ACEGA). SbnB is shown to use NAD(+) to oxidatively hydrolyze ACEGA to yield α-ketoglutarate and L-Dap. Also, we describe crystal structures of SbnB in complex with NADH and ACEGA as well as with NAD(+) and α-ketoglutarate to reveal the residues required for substrate binding, oxidation, and hydrolysis. SbnA and SbnB contribute to the iron sparing response of S. aureus that enables staphyloferrin B biosynthesis in the absence of an active tricarboxylic acid cycle.
3. Mechanism-based traps enable protease and hydrolase substrate discovery
Shan Tang, Adam T Beattie, Lucie Kafkova, Gianluca Petris, Nicolas Huguenin-Dezot, Marc Fiedler, Matthew Freeman, Jason W Chin Nature. 2022 Feb;602(7898):701-707. doi: 10.1038/s41586-022-04414-9. Epub 2022 Feb 16.
Hydrolase enzymes, including proteases, are encoded by 2-3% of the genes in the human genome and 14% of these enzymes are active drug targets1. However, the activities and substrate specificities of many proteases-especially those embedded in membranes-and other hydrolases remain unknown. Here we report a strategy for creating mechanism-based, light-activated protease and hydrolase substrate traps in complex mixtures and live mammalian cells. The traps capture substrates of hydrolases, which normally use a serine or cysteine nucleophile. Replacing the catalytic nucleophile with genetically encoded 2,3-diaminopropionic acid allows the first step reaction to form an acyl-enzyme intermediate in which a substrate fragment is covalently linked to the enzyme through a stable amide bond2; this enables stringent purification and identification of substrates. We identify new substrates for proteases, including an intramembrane mammalian rhomboid protease RHBDL4 (refs. 3,4). We demonstrate that RHBDL4 can shed luminal fragments of endoplasmic reticulum-resident type I transmembrane proteins to the extracellular space, as well as promoting non-canonical secretion of endogenous soluble endoplasmic reticulum-resident chaperones. We also discover that the putative serine hydrolase retinoblastoma binding protein 9 (ref. 5) is an aminopeptidase with a preference for removing aromatic amino acids in human cells. Our results exemplify a powerful paradigm for identifying the substrates and activities of hydrolase enzymes.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: Gly-NH-CH2-Boc | Py-MAA-Val-Cit-PAB-MMAE | Lys(MMT)-PAB-oxydiacetamide-PEG8-N3 | (2R,10S)-10-Benzyl-2-cyclopropyl-23-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-6,9,12,15,18-pentaoxo-3-oxa-5,8,11,14,17-pentaazatricosanoic acid | Mal-di-PEG-Val-Cit-PAB | N3-PEG3-VC-PAB-MMAE | Mal-PEG6-NHS | Boc-Phe-(Alloc)Lys-PAB-PNP | MPB-VC-PAB-DM1 | Cbz-Phe-(Alloc)Lys-PAB-PNP | Nα-Azido-Nβ-Boc-L-2,3-diaminopropionic acid
Send Inquiry
Verification code
Inquiry Basket