webinar
Oct. 27-28, 2025, Boston, MA, USA - Booth 114.
Read More

Azide-PEG3-Tos

  CAS No.: 178685-33-1   Cat No.: BADC-00992   Purity: >98.0% 4.5  

Azide-PEG3-Tos is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs. Azide-PEG3-Tos is also a non-cleavable 3 unit PEG ADC linker used in the synthesis of antibody-drug conjugates (ADCs).

Azide-PEG3-Tos

Structure of 178685-33-1

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
ADC Linker
Molecular Formula
C13H19N3O5S
Molecular Weight
329.37
Shipping
Room temperature, or blue ice upon request.
Shipping
Store at -20 °C, keep in dry and avoid sunlight.

* For research and manufacturing use only. We do not sell to patients.

Size Price Stock Quantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

Popular Publications Citing BOC Sciences Products
Synonyms
2-(2-(2-Azidoethoxy)ethoxy)ethyl 4-methylbenzenesulfonate
IUPAC Name
2-[2-(2-azidoethoxy)ethoxy]ethyl 4-methylbenzenesulfonate
Canonical SMILES
CC1=CC=C(C=C1)S(=O)(=O)OCCOCCOCCN=[N+]=[N-]
InChI
InChI=1S/C13H19N3O5S/c1-12-2-4-13(5-3-12)22(17,18)21-11-10-20-9-8-19-7-6-15-16-14/h2-5H,6-11H2,1H3
InChIKey
PTOJCKLTCKYNFG-UHFFFAOYSA-N
Solubility
10 mm in DMSO
PSA
119.96000
Shelf Life
0-4°C for short term (days to weeks), or -20°C for long term (months).
Shipping
Room temperature, or blue ice upon request.
Storage
Store at -20 °C, keep in dry and avoid sunlight.

Azide-PEG3-Tos, also known as azido-PEG3-tosylate, is a versatile compound used predominantly in the field of chemical biology and materials science due to its unique reactivity and structural properties. One of the primary applications is in the development of click chemistry techniques. The azide group can react with alkynes in a highly efficient and specific manner under mild conditions, often catalyzed by copper(I) to form stable triazole linkages. This “click” reaction is invaluable in bioorthogonal chemistry, allowing for the conjugation of biomolecules without interfering with natural biological processes. Applications include the labeling of biomolecules, synthesis of bioconjugates, and the generation of complex macromolecular structures. These capabilities make Azide-PEG3-Tos an essential tool in creating advanced diagnostic and therapeutic agents.

In the realm of drug delivery, Azide-PEG3-Tos plays a crucial role in the modification and functionalization of nanoparticles and other drug carrier systems. The polyethylene glycol (PEG) segment provides hydrophilicity and biocompatibility, enhancing the solubility and circulation time of the carriers in biological systems. The terminal azide group serves as a reactive handle for further chemical modifications, allowing for the attachment of targeting ligands, fluorescent markers, or drug molecules via click chemistry. This versatility facilitates the design of smart drug delivery systems that can target specific cells or tissues, improving the efficacy and reducing the side effects of therapeutic agents.

Azide-PEG3-Tos is also extensively used in the creation of advanced materials, particularly in the development of hydrogels and polymer networks. The PEG chain provides flexibility and hydrophilicity, making these materials suitable for various biomedical applications, such as tissue engineering and regenerative medicine. The azide functional group enables cross-linking reactions with alkyne-functionalized polymers, resulting in the formation of robust, yet biocompatible networks. These networks can be engineered to have specific physical and chemical properties such as degradability, porosity, and mechanical strength, which are critical for mimicking natural tissues and supporting cell growth and differentiation.

Lastly, Azide-PEG3-Tos is instrumental in surface modification techniques, which are essential for creating bioinert and bioactive surfaces. Coating surfaces with PEG can prevent nonspecific protein adsorption and cell adhesion, which is beneficial for medical devices and implants. The azide group facilitates the immobilization of various functional molecules, including peptides, proteins, and other bioactive agents, onto these PEGylated surfaces. This enables the creation of surfaces with tailored functionalities, such as antifouling properties or specific binding capabilities, enhancing the performance and biocompatibility of biomedical devices and diagnostic tools.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

Contact our experts today for pricing and comprehensive details on our ADC offerings.

You May Also Be Interested In

From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.

ADC Linker Development Enzyme Cleavable Linker Cathepsin B Cleavable Linker/Peptide Linker Phosphatase Cleavable Linker β-Glucuronide Linker β-Galactosidase Cleavable Linker Sulfatase Cleavable Linker Chemically Cleavable Linker Non-Cleavable Linker Services Acid Cleavable Linker/Hydrazone Linker

Unlock Deeper ADC Insights

Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.

Linkers - A Crucial Factor in Antibody–Drug Conjugates In-Depth Review of ADC Linkers: Types, Mechanisms, and Research Progress New Structural Insights Solve Instability Issues of Maleimide Linkers in ADCs PEG Linkers in Antibody-Drug Conjugates Peptide Linkers in Antibody-Drug Conjugates Disulfide Linkers in Antibody-Drug Conjugates Biotinylation Reagents in Antibody-Drug Conjugates Maleimide Linkers in Antibody-Drug Conjugates Current ADC Linker Chemistry SPDB Linkers in Antibody-Drug Conjugates

Explore More ADC Products

Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.

ADC Cytotoxin

Powerful Targeted Cancer Solutions

ADC  Cytotoxin with Linker

Enhanced Stability And Efficacy

ADC Linker

Precise Conjugation For Success

Antibody-Drug  Conjugates (ADCs)

Maximized Therapeutic Performance

Auristatins

Next-Level Tubulin Inhibition

Calicheamicins

High-Impact DNA Targeting

Camptothecins

Advanced Topoisomerase Inhibition

Daunorubicins / Doxorubicins

Trusted Anthracycline Payloads

Duocarmycins

Potent DNA Alkylation Agents

Maytansinoids

Superior Microtubule Disruption

Pyrrolobenzodiazepines

Ultra-Potent DNA Crosslinkers

Traditional Cytotoxic Agents

Proven Chemotherapy Solutions

Cleavable Linker

Precise Intracellular Drug Release

Non-Cleavable Linker

Exceptional Long-Term Stability

Historical Records: Tr-PEG3-OH | Mal-PEG3-C1-NHS ester | Aminoxyacetamide-PEG3-azide | N-Boc-MeVal | m-PEG12-OH | mPEG10-amine | Hemiasterlin | mPEG5-acetic acid | BCN-SS-NHS | Boc-L-4-trans-hydroxyproline methyl ester | Azide-PEG3-Tos
Send Inquiry
Verification code
Inquiry Basket