Cyclooctyne-O-amido-PEG4-NHS ester is a key reagent used in the biomedical industry for the efficient conjugation of biological molecules. It enables the site-specific modification of proteins, peptides, and antibodies for various applications such as drug delivery, diagnostics, and targeted therapy. This NHS ester derivative offers high stability and reactivity, making it suitable for the synthesis of bioconjugates used in the treatment of diseases like cancer and autoimmune disorders.
Structure of 2101206-50-0
* For research and manufacturing use only. We do not sell to patients.
Size | Price | Stock | Quantity |
---|---|---|---|
-- | $-- | In stock |
Looking for different specifications? Click to request a custom quote!
Capabilities & Facilities
Cyclooctyne-O-amido-PEG4-NHS ester, a versatile reagent for bioconjugation and click chemistry, finds diverse applications in research and development. Here are four key applications:
Protein Labeling: Employing Cyclooctyne-O-amido-PEG4-NHS ester, researchers can intricately label proteins with a myriad of probes for imaging or purification purposes. By engaging with amine groups on proteins, it facilitates the attachment of fluorescent dyes or affinity tags, crucial for unraveling the intricate dynamics of protein localization, interactions, and functions within cells and tissues.
Antibody-Drug Conjugates (ADCs): This compound plays a pivotal role in synthesizing ADCs, where antibodies are intricately linked to cytotoxic drugs. The NHS ester interacts with lysine residues on the antibody, while the cyclooctyne group contributes to strain-promoted alkyne-azide cycloaddition with drug-linker conjugates. This targeted drug delivery system not only amplifies the therapeutic index but also diminishes off-target effects in the realm of cancer treatments.
Surface Modification: Cyclooctyne-O-amido-PEG4-NHS ester serves as a vital tool in the surface modification of biomaterials and medical devices. By introducing biofunctional groups onto surfaces, it enhances biocompatibility and cell attachment in tissue engineering applications. Moreover, it aids in crafting antifouling surfaces to thwart undesirable biofilm formation, propelling advancements in medical technology.
Bioconjugation and Click Chemistry: This compound is indispensable in bioconjugation techniques involving strain-promoted alkyne-azide cycloaddition (SPAAC), fostering intricate molecular assemblies. The PEG4 spacer enhances solubility and diminishes steric hindrance, facilitating efficient click reactions with azide-containing biomolecules. This ability makes it a preferred choice for constructing complex biomolecular structures and investigating the nuanced processes of biology.
Catalog | Product Name | CAS | Inquiry |
---|---|---|---|
BADC-01533 | Cyclooctyne-O-amido-PEG2-NHS ester | 2101206-22-6 | |
BADC-01060 | Cyclooctyne-O-amido-PEG3-PFP ester | 2101206-33-9 | |
BADC-01532 | Cyclooctyne-O-amido-PEG3-NHS ester | 2101206-34-0 | |
BADC-01061 | Cyclooctyne-O-amido-PEG2-PFP ester | 2101206-61-3 | |
BADC-01240 | Cyclooctyne-O-amido-PEG4-PFP ester |
Contact our experts today for pricing and comprehensive details on our ADC offerings.
From cytotoxin synthesis to linker design, discover our specialized services that complement your ADC projects.
Learn more about payload design, linker strategies, and integrated CDMO support through our curated ADC content.
Find exactly what your project needs from our expanded range of ADCs, offering flexible options to fit your timelines and goals.